Relativistic Time and Distance in Heracletean Dynamics

Janez Špringer
Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: Respecting Einsteinian dynamics the relativistic time and distance in Heracletean dynamics is proposed.

Keywords: Einsteinian and Heracletean dynamics, the relativistic time and distance

1. INTRODUCTION

The relativistic time and distance in Heracletean dynamics as a hypernym of Einsteinian dynamics is the subject of interest of this paper.

In Heracletean dynamics the relativistic and ground mass are related as follows [1]:

\[m_{\text{relativistic}}^2 a^2 = e^{\frac{m_{\text{ground}}^2 c^2 - k(1 - \ln k) + m_{\text{relativistic}}^2 c^2(a^2 - 1)}{k}}. \]

(1)

Where the dynamics constant is denoted \(k \), the mass-energy constant being equal the approximate speed of light is denoted \(c \), and some speed expressed in the approximate speed of light is denoted \(a \). Applying the relation \(e^x \approx 1 + x \) the above equation (1) takes more polite form:

\[m_{\text{relativistic}}^2 c^2 \approx \frac{m_{\text{ground}}^2 c^2 + k \ln k}{a^2 k + 1 - a^2}. \]

(2)

At the zero dynamics constant, \(k=0 \), Einsteinian dynamics as a hyponym of Heracletean dynamics is recognized:

\[\frac{m_{\text{relativistic}}}{m_{\text{rest}}} = \sqrt{\frac{1}{1 - a^2}}. \]

(3)

Here the ground mass at the zero speed is called the rest mass.

In Einsteinian dynamics the factor \(\sqrt{\frac{1}{1 - a^2}} \) characterizes the relativistic time and distance, too:

\[\frac{m_{\text{relativistic}}}{m_{\text{rest}}} = \sqrt{\frac{1}{1 - a^2}} = \frac{t}{t_0} = \frac{s_0}{s}. \]

(4)

So taking into account the given analogy (4) one can propose the next relations for the relativistic time and distance in Heracletean dynamics:

\[t^2 c^2 a^2 = e^{\frac{t_0^2 c^2 - k(1 - \ln k) + t^2 c^2(a^2 - 1)}{k}}, \]

(5)

\[t^2 c^2 \approx \frac{t_0^2 c^2 + k \ln k}{a^2 k + 1 - a^2}. \]

(6)

And

\[s_0^2 c^2 a^2 = e^{\frac{s_0^2 c^2 - k(1 - \ln k) + s_0^2 c^2(a^2 - 1)}{k}}. \]

(7)

\[s_0^2 c^2 \approx \frac{s_0^2 c^2 + k \ln k}{a^2 k + 1 - a^2}. \]

(8)
Where t_0 and s_0 is time and distance in the ground state frame, respectively.

2. CONCLUSION

In Einsteinian as well as Heracletean dynamics the relativistic physical quantities – mass, time and distance – should be unambiguously of relativistic energy dependent.

LOGIC

Definitions are not disputable. And axioms are taken as to be true.

REFERENCES