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1. INTRODUCTION 

The deployment of Long Term Evolution (LTE) cellular systems started in Nigeria some fey years 

ago, with the aim of enhancing the existing cellular communication systems such as Universal Mobile 
Telecommunication System (UMTS), Global Systems for Mobile Communication (GSM) and High-

Speed Packet Access (HSPA). LTE is designed to provide improved cellular communication systems, 

like superior sector capacity and coverage, flexible bandwidth operation, enriched user experience 
with full mobility, enhanced end-user throughputs, compact user plane latency, robust multi-antenna 

support, equitable operating costs, and seamless integration with existing systems [1]. Accordingly, 

the LTE can provide up to 50 Mbps peak data rates for uplink and 100 Mbps for downlink, at 20 MHz 

bandwidth (BW)). In terms of spectral efficiency, it can provide up to 2.5 bps/Hz for uplink and 5 bps/ 
Hz for downlink [1, 2].LTE is also designed to provide better cell edge coverage performance and 

scalable BW capacity (between 1.25 and 20 MHz). 

Realistic signal power coverage loss-centric modeling and predictive analysis are of key means of 
planning new cellular networks like LTE and optimizing existing ones. One conventional method of 

signal power coverage loss-centric predictive modeling in literature is the use of least square (LS) 

regression [3-12]. But a major problem with LS regression approach is that it demands varying and 

incrementing one after another repeatedly in steps, before reaching a near global minimum [13-15]. 

In contemporary times, different computational intelligent methods have been exploited to 

predictively and analytically model the stochastic behaviour of propagated radio signal from the base 

station transmitters in different terrain [16-19]. Of these computational intelligent methods are 
artificial neural networks (ANNs). ANNs models have been widely used in handling multifaceted 

non-linear function approximation problems with a superior predictive accuracy than the 

aforementioned conventional technique such as LS regression, which are based on linear regression.  

In our previous works [20-22], we concentrated on linear adaptive and multilayer perception neural 

networks. In this paper, we provide a predictive mathematical analysis of stochastic behaviour of 

propagated radio signal loss data obtained from deployed LTE networks in urban microcell using 

GRNN modelling approach. The predictive modelling techniques characterizes the coupling relation 
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between the spatial signal coverage data and the communication distance, taking into account both 
line of sight and non-line of sight propagated signal scenarios. Detailed predictive analysis of the 

signal loss data obtained at 1900 MHz from three Base Transceiver Stations using the GRRN model 

in comparison with least square regression technique are also provided. 

2. LEAST SQUARE REGRESSION METHOD 

Regression method remained a well-known conventional technique that has been widely explored for 

statistical predictive analysis in literature for approximating the values of dependent variable (e.g. 

signal power) in correspondence with the values of the independent variables.  

The influence of independent variables on the on dependent ones can conveyed mathematically with a 

response function f: 

),...;,...,,( 2121 mnxxxfy                                                                                                           (1) 

The regression model is given by: 
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where y is the dependent (observed response) variable; nxx ,....,1  expresses the input variables, n is 

the input variable  number, m ,....,, 21  and   articulate the unknown regression model 

parameters and the error term.  

The unknown model parameters can be obtained in least square sense by: 
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where ),....,,( 21 mS  is the error function. 

Specifically, to estimate m ,....,, 21 , we minimized S  by solving the system of equations: 

mi
i

S
,...,2,1,0 






                                                                                                                           (4) 

3. GENERAL REGRESSION NEURAL NETWORK (GRNN) 

General Regression Neural Networks (GRNNs), are distinctive class of probabilistic neural networks 

(PNNs). Largely, the application of PNNs is particularly advantageous owing to their capability to 

converge and congregate to the core function to the given data, even if the training sample number is 

small. Furthermore, the information required to obtain satisfying fit of their networks to data is 

reasonably small and can be accomplished with or without extra input by the handler. As a result, this 

makes GRNN a distinctive and resourceful tool to carry out predictive task robustly in practice [23, 

24].  

Specifically, the GRNN comprises of four key layers viz., input layer, summation layer, pattern layer, 

and output layer as revealed in figure 1. As can be seen in the figure, the input and the pattern layer 

are completely connected to each other and also link up to the summation layer, where each unit 

defines the training implementation pattern. The summation layer calculates the sum of the weighted 

outputs from the input layer via the pattern layer to the output; and the output is the resultant 

destination of the training process. Summation layer contains two focal sub-parts, which are 

numerator part and denominator part. While the formal part sums the multiplication of activation 

function and output data training, the later caters for the summation of the entire activation function 

[23]. The summation layer values are fed through the summation layer to the output layer. During 

training, each data sample is catered for as the average of normal distribution, and the output can be 

expressed as:  
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where 𝜎 indicates spread constant and it determines the smoothness; i   is the basis function and is 

relates the data training sample number; y(i) indicates the values of training outputs. 

 
Figure1. The GRNN architecture 

4. DATA COLLECTION METHODOLOGY 

The measured values of RSRP signal loss data employed to build the GRRN model were obtained 

using drive-test tools in commercial LTE cellular networks and the networks belongs to MTN 
Telecommunication Company located in the City Port Harcourt. The LTE network operates at 

1900MHz frequency Band. A drive-test tools possess the capability to access, generate and acquire 

real-time LTE RSRP data automatically and uniformly from the base station transmitters. The tools 

include: Two LTE proficient mobile handsets (i.e. Sony Ericson and Samsung Y-4), Network 
Scanner, external GPS devices, Compass, HP Laptop and some key computer software such as 

MapInfo, Matlab 2015a, Excel spread, that were utilized for post-processing of acquired signal testing 

log files and  data analysis. The LTE mobile phones and the HP laptop were both engrained with 
mobile testing software (a.k.a. TEMS) which enable it to access, record and extract the signal data 

along the measurement test routes. The GPS and Compass are used for matching up the mobile station 

(i.e. user equipment) measurement locations in correspondent to field test environment and the base 
station transmitter. The field signal power measurements were carried out in three selected locations 

with special concentration on built-up busy urban streets, roads and open areas with mixed residential 

and commercial building structures. The measured signal power loss values, SLoss can be expressed 

mathematically using: 

RSRPEIRPSLoss                                                                                                                           (7) 

where: 

EIRP= Effective Isotropic Radiated Power, 

RSRP=Received Signal Power 

5. TRAINING AND PREDICTION 

All written GRNN program, computations and implementation were carried with the aid of 

MATLAB2015a software and platform. To beat over fitting problem that usually impact ANN 
predictive learning and training capability negatively, the early-stopping method was utilised. 

Accordingly, the field data was shared into three sets by means of ratio 75%: 15%:15%, which are for 

training, testing and validation respectively. In the GRNN implementation, the centers of the Gaussian 

are selected equal to the signal data training input patterns, and a spread parameter of 9 was employed 
for the training. 



Generalized Regression Neural Network: an Alternative Approach for Reliable Prognostic Analysis of 

Spatial Signal Power Loss in Cellular Broadband Networks 

 

International Journal of Advanced Research in Physical Science (IJARPS)                                      Page | 38 

Also, by means of the expression in equation (8), the input data sets were normalized to enhance the 
generalization of ANNs [14]. 

 
 minmax

min

QQ

QQ
Qn o




                                                                                                                             (8) 

where 

Q n = normalized value 

Q o = original value of the parameter 

Q min = Minimum parameter value  

Q max = Maximum parameter value  

For the purpose performance comparative investigation between the conventional least regression 

method and the GRNN method, statistical parameters, namely root mean squared error (RMSE), 
standard deviation error (SDE), mean squared error (MSE) and mean absolute error (MAE).The 

parameters can be quantified mathematically as follows: 
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where kt denotes the target value, ky indicates the actual network value, ky  is the mean of the actual 

network value, Kk ,...,2,1 are values the signal loss sample  

6. RESULTS AND ANALYSIS 

Presented in figures 2a-4a and 2b-4b are the respective predictions made using the conventional LS 

regression model and the proposed GRNN model on Measured Signal loss Data in three outdoor LTE 

network environments. In the figures, while the RMSE between the Measured Signal loss Data and 
the GRNN model were found to1.85, 2.36and 4.06 dB in site 1 to 3, the LS regression model attained 

3.85, 5.20 and 6.29dB respectively. The above results reveals a superior prediction adaptation of 

GRNN model to the signal loss data; such performance can be to GRRN ability to learn and captures 

the non-linear behaviour of input signal variables over the propagation LTE network area.  

 

Figure2a. Measured Signal loss Data and LS predicted Output in Site 1 



Generalized Regression Neural Network: an Alternative Approach for Reliable Prognostic Analysis of 

Spatial Signal Power Loss in Cellular Broadband Networks 

 

International Journal of Advanced Research in Physical Science (IJARPS)                                      Page | 39 

 

Figure2b. Measured Signal loss Data and GRNN predicted Output in Site 1 

 

Figure3a. Measured Signal loss data and LS predicted Output in Site 2 

 

Figure3b. Measured Signal loss Data and GRNN predicted Output in Site 2 
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Figure4a. Measured Signal loss Data and LS predicted Output in Site 3 

 

Figure4b. Measured Signal loss Data and GRNN predicted Output in Site 3 

7. CONCLUSION 

Realistic signal coverage loss-centric modeling and predictive analysis are of key means of planning 

new cellular networks like LTE and optimizing existing ones. 

In this study, we have provided a predictive mathematical analysis of stochastic behaviour of 
propagated radio signal loss data obtained from deployed LTE networks in urban microcell using 

GRNN modelling approach. Detailed predictive of analysis of the signal loss data obtained at 1900 

MHz from three Base Transceiver Stations using the GRRN model in comparison with least square 
regression technique have also been provided. The predictive analysis has been evaluated by four key 

performance indexes, which are root mean square error, standard deviation error correlation 
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coefficient and mean absolute error. In the figures, while the root mean square error between the 
Measured Signal loss Data and the GRNN model were found to1.85, 2.36and 4.06 dB in site 1 to 3, 

the LS regression model attained 3.85, 5.20 and 6.29dB respectively. 
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