Effect of Inclination and Form Factor on a Study of the Three-dimensional Free Convection around an Ellipsoid of Revolution

Ulrich CANISSIUS
Laboratoire de Mécanique et de Métrologie (LMM), Ecole Normale Supérieure pour l’Enseignement Technique (ENSET), Université d’Antsiranana, B.P.0, Madagascar

Abstract: In this paper, the author solves numerically, using the method of finite differences, the transfer equations, laminar, three-dimensional, between inclined isothermal ellipsoid of revolution, and a Newtonian fluid in vertical upward flow generated by the natural convection. In the boundary layer, the results concerning the dimensionless velocity fields and temperatures as well as the Nusselt number and the friction coefficients, are represented graphically. With respect to the angle of inclination of the ellipsoid, the author puts in evidence of the privileged points on the partition of the body. Secondly, the influence of the geometry of the body was also considered, in order to assess the adherence of the fluid on the wall and locate the boundary layer separation points.

Keywords: three-dimensional free convection, three-dimensional boundary layer, form factor, inclined ellipsoid of revolution, heat transfer, numerical study.

NOMENCLATURE

Roman Letter Symbols

- \(a \) thermal diffusivity of the fluid (m\(^2\).s\(^{-1}\))
- \(a' \) length of the semi-axis of the axis of revolution, (m)
- \(b \) half-axis length perpendicular to the axis of revolution of the ellipsoid, (m)
- \(C_{fu} \) meridian friction coefficient
- \(C_{fw} \) azimuthal friction coefficient
- \(C_p \) specific heat capacity at constant pressure of the fluid, (J.kg\(^{-1}\).K\(^{-1}\))
- \(g \) acceleration due to gravity, (m.s\(^{-2}\))
- \(L \) length reference body, (m)
- \(Nu \) local Nusselt number
- \(Pr \) Prandtl number
- \(r \) normal distance from the projected M of a point P of the fluid to the axis of revolution of the ellipsoid, (m)
- \(S_x, S_\phi \) factors of geometric configuration
- \(T_\infty \) temperature of the fluid away from the wall, (K)
- \(T_p \) temperature of the wall, (K)
- \(V_x \) velocity component in x direction, (m.s\(^{-1}\))
- \(V_y \) velocity component in y direction, (m.s\(^{-1}\))
- \(V_\phi \) velocity component in \(\phi \) direction, (m.s\(^{-1}\))
- \(x, y \) meridian and normal coordinates, (m)

Greek Letter Symbols

- \(\alpha \) angle of inclination, (°)
- \(\alpha_e \) eccentric angle, in the literature, (rad)
- \(\phi \) azimuthal coordinate, (°)
- \(\rho \) density of the fluid, (kg.m\(^{-3}\))
- \(\nu \) kinematic viscosity, (m\(^2\).s\(^{-1}\))
- \(\lambda \) thermal conductivity, (W.m\(^{-1}\).K\(^{-1}\))
- \(\mu \) dynamic viscosity, (kg.m\(^{-1}\).s\(^{-1}\))
- \(\beta \) volumetric coefficient and thermal expansion, (K\(^{-1}\))
- \(\beta_r \) angle formed by the major axis and a point on the wall, (°)

Indices/Exponents

+ dimensionless variables

1. INTRODUCTION

This work carries on a study of heat transfers around the rotationally symmetrical body [1-23] given their practical interest, especially in machinery. Take for example some hydraulic structures, aircraft, turbine engines, propulsion systems for ships, rockets, projectiles, metal deposition techniques in a vapor phase. Most of the literature relating to vertical ellipsoid. Among them, as Souad et al [1]
studied the heat transfer and unsteady pulse by natural convection within an air-filled ellipsoid of revolution and whose wall is to be brought to a constant temperature, is crossed by a flow of constant density and warmth they have shown the existence of multicellular structures for certain values of the Grash of number and the variation of the form factor. Furthermore, authors observe the transition of the system between two equilibrium states and claim that the Nusselt number is monotonically decreasing function of time when the flow is unicellular and sharply decreases with each appearance or disappearance of cells. Mochimaru [2] studied the numerical simulation of the natural convection in a cavity of an ellipsoid of revolution, using a method of spectral finite differences. He found that the strength of the circulating movement of the liquid metal layers due to natural convection can be well controlled by variation of heat transfer through the wall of the ellipsoid. Olumuyiwa [3] has contributed to the heat transfer by convection mixed rotationally elliptical vertical and it confirmed that the disturbance parameter is responsible for the lateral displacement of the temperature profile. The author compares the results with the published work by Morris [4,5] to check the calculation code. Alidina [6] contributed to a study of laminar and permanent three-dimensional flows around the ellipsoid of revolution. He showed that on the wall, there is a place where the components do not depend on the position of the body in space. Cherif et al [7] contributed in the hydrodynamic control by mixed convection of the thickness of the vapor deposition of the semiconductor on the symmetrical body. Authors show that the flow and transfer are significantly dependent on this variability and which is possible to control the growth of heat and mass boundary layers by acting on the operating conditions, in particular on the profiles of body. A. Watson et al [8] studied the steady laminar free convection due to an ellipsoid of revolution heated; Xia et al [9] have landed on the natural convection of the low pressure gas in the ellipsoidal chamber induced by combined thermal conditions. After the works, the survey shows that the various thermal conditions non-uniform of stratospheric environment exert a significant influence on both thermal and dynamic characteristics of natural convection of a gas at low pressure in a chamber. Shapiro et al [10] discussed the vortex formation in a thermal elliptical bubble. Lin et al [11] studied the two-dimensional natural convection around the body in the axisymmetric case of variable shape. The authors proposed a fast calculation procedure based on the coordinate transformation which can express the solutions of the conservation equations that govern based on a sequence of universal functions that depend on the Prandtl number and the configuration, determined by the contour of the body and its orientation relative to the strength of the body which generates the movement. Medvinsky et al [12] discussed a study of the conditions to local limits absorption elliptical limits based on the Helmholtz equation and also introducing a new boundary condition of an ellipse based on modal expansion. Abel et al [13] studied experimentally using air as the working fluid in two distinct cases: one in which the duct is at a uniform temperature, and the other where the wall temperature distribution is linear in the axial direction and does not vary transversely.

Given all the research work published on an ellipsoid, the three-dimensional natural convection between a Newtonian fluid and an inclined elliptical body, also of great interest, given the technological developments in terms of research in the field of heat.

This work, which aims to analyze the influence of the inclination angle on heat transfer. We consider a three-dimensional flow, laminar, continuous, isothermal between a ellipsoid of revolution and a newtonian fluid in vertical upward flow created by the natural convection whose the axis of symmetry is inclined relative to the vertical direction. The conservation equations are discretized using an implicit finite difference scheme.

2. THEORETICAL FOUNDATIONS

The model considered is constituted by an ellipsoid of revolution of length L and inclined by an angle \(\alpha \) relative to the vertical. The body wall is maintained at a constant temperature \(T_p \), different from the temperature \(T_\infty \) of fluid away from the wall which is also constant.

The Figure 1 shows the spatial configuration of the physical model studied.
Effect of Inclination and Form Factor on a Study of the Three-dimensional Free Convection around an Ellipsoid of Revolution

Figure 1. Physical Model and Co-Ordinates System

2.1. Simplifying Assumptions
Taking into account the assumptions of Boussinesq, we ask that which follows:

— The ellipsoid is stationary,
— Transfers are laminar and permanent,
— Radiative transfer and viscous energy dissipation are negligible,
— The fluid is air whose physical properties are constant, except for the variations of density are at the origin of the free convection.

2.2. Conservation Equations in the Boundary Layer
Let $\Delta T = T_p - T_\infty$ and the appropriate variables are reduced:

$$x_+ = \frac{x}{L}, \quad y_+ = \frac{y}{L}, \quad Gr \varphi_+ = \frac{\varphi}{2\pi}, \quad r_+ = \frac{r}{L}$$

$$V_x^+ = \frac{V_x}{\sqrt{Lg \beta \Delta T}}, \quad V_y^+ = \frac{V_y}{\sqrt{Lg \beta \Delta T}}, \quad V_\varphi^+ = \frac{V_\varphi}{\sqrt{Lg \beta \Delta T}}, \quad T^+ = \frac{T - T_\infty}{T_p - T_\infty}$$

$$Gr = \frac{g \beta (T_p - T_\infty)L^3}{v^2}$$

Then, the dimensionless equations in the boundary layer are written:

- **Equation of Continuity**
 $$\frac{\partial V_x^+}{\partial x_+} + \frac{\partial V_y^+}{\partial y_+} + \frac{1}{r_+} \frac{V_\varphi^+}{\partial \varphi_+} + \frac{V_\varphi^+}{r_+} \frac{dr^+}{dx_+} = 0$$
 (1)

- **Momentum Equation**
 $$V_x^+ \frac{\partial V_x^+}{\partial x_+} + V_y^+ \frac{\partial V_y^+}{\partial y_+} + V_\varphi^+ \frac{\partial V_\varphi^+}{\partial \varphi_+} - \frac{V_\varphi^+}{r_+} \frac{dr^+}{dx_+} = S_x T^+ + \frac{\partial^2 V_x^+}{\partial y_+^2}$$
 (2)

 $$V_x^+ \frac{\partial V_x^+}{\partial x_+} + V_y^+ \frac{\partial V_y^+}{\partial y_+} + V_\varphi^+ \frac{\partial V_\varphi^+}{\partial \varphi_+} + \frac{V_\varphi^+}{r_+} \frac{dr^+}{dx_+} = S_\varphi T^+ + \frac{\partial^2 V_\varphi^+}{\partial y_+^2}$$
 (3)

S_x and S_φ are the factors of geometric configuration defined by:

$$S_x = \sin \alpha \cdot \cos \varphi \cdot \cos \beta_i + \cos \alpha \cdot \sin \varphi$$

$$S_\varphi = -\sin \alpha \cdot \sin \varphi$$

(4)
The dimensionless equations are discretized by the method of finite differences in its implicit form.

The calculations are performed with the nodes \((i+1,j,k)\), with \(1 \leq i \leq I_{MAX}, \ 1 \leq j \leq J_{MAX} \) et \(1 \leq k \leq K_{MAX} \). For the dimensionless quantities \(V_x^+, V_y^+, V_\phi^+\) et \(T^+\), we approach the partial derivatives as follows, \(X\) is one of them and the unknown variables being indexed by \(i+1\).

The terms \(V_x^+\) in the operator \(V_x^+ \frac{\partial}{\partial x^+}\), \(V_y^+\) in the operator \(V_y^+ \frac{\partial}{\partial y^+}\) and \(V_\phi^+\) in the operator \(V_\phi^+ \frac{\partial}{\partial \phi^+}\) are replaced by the values \((V_x^+)_{i+1,j,k}, (V_y^+)_{i+1,j,k}, (V_\phi^+)_{i+1,j,k}\) calculated at the nodes \((i+1, j, k)\).

For clarity, we note respectively \(U, V, W\) et \(T\), the components meridian, normal, azimuthal and dimensionless temperature. After arrangement, the discretized equations can respectively be expressed in the following form:

\[AX_{j+1} + BX_j + CX_{j-1} = D_j \quad 2 \leq j \leq J_{MAX} - 1 \]
Effect of Inclination and Form Factor on a Study of the Three-dimensional Free Convection around an Ellipsoid of Revolution

The algebraic systems (11) associated with boundary conditions discretized are solved by the Thomas algorithm. As for the normal component dimensionless \(V^+ \), it is obtained from the discretization of the continuity equation using the relationship:

\[
V^+ = \frac{1}{4} \left[3V^+ + 2\Delta x \left(U^+_{i+1,j} - U^+_{i,j} + 3W^+_{i+1,j} - 4W^+_{i,j} + W^+_{i-1,j} + U^+_{i,j} \left(1 - \frac{r^+}{r^+_{i+1,j}} \right) \right) \right]
\]

(12)

With \(1 \leq i \leq N - 1, 1 \leq k \leq L - 1 \) et \(2 \leq j \leq J \) max – 1

The convergence criterion within the boundary layer is assured when:

\[
\left| \frac{(X)^{p+1} - (X)^p}{\text{Sup}[(X)^{p+1}, (X)^p]} \right| \leq \epsilon
\]

(13)

(13)

4. RESULTS AND DISCUSSION

To prove the accuracy of our results, we validated the digital code by comparing the results of our calculations with those deduced from the literature, in the case of an axisymmetric system of an elongated ellipsoid. The table IV-1, illustrating the evolution of the heat exchange ratio based on the eccentric angle in a range of 0 to \(\pi \), \(Pr = 1.0 \), shows that our results are in good agreement with those in the literature [20] and the relative deviation of not more than 1%. In the same table, we also compare the results with those obtained by Merkin [19], it seems reasonable to conclude that the agreement is good.

Table IV-1. Numerical values of heat transfer coefficient, \(\alpha_e \in [0, \pi] \), \(Pr = 1.0, b/a' = 0.25 \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.8412</td>
<td>0.8426</td>
<td>0.8539</td>
</tr>
<tr>
<td>0.2</td>
<td>0.7714</td>
<td>0.7766</td>
<td>0.7858</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6622</td>
<td>0.6619</td>
<td>0.6617</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5790</td>
<td>0.5781</td>
<td>0.5788</td>
</tr>
<tr>
<td>0.8</td>
<td>0.5184</td>
<td>0.5175</td>
<td>0.5187</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4736</td>
<td>0.4729</td>
<td>0.4745</td>
</tr>
<tr>
<td>1.2</td>
<td>0.4397</td>
<td>0.4392</td>
<td>0.4409</td>
</tr>
<tr>
<td>1.4</td>
<td>0.4146</td>
<td>0.4132</td>
<td>0.4149</td>
</tr>
<tr>
<td>1.6</td>
<td>0.3938</td>
<td>0.3929</td>
<td>0.3941</td>
</tr>
<tr>
<td>1.8</td>
<td>0.3772</td>
<td>0.3768</td>
<td>0.3779</td>
</tr>
<tr>
<td>2.0</td>
<td>0.3644</td>
<td>0.3641</td>
<td>0.3646</td>
</tr>
<tr>
<td>2.2</td>
<td>0.3539</td>
<td>0.3538</td>
<td>0.3538</td>
</tr>
<tr>
<td>2.4</td>
<td>0.3450</td>
<td>0.3451</td>
<td>0.3457</td>
</tr>
<tr>
<td>2.6</td>
<td>0.3368</td>
<td>0.3370</td>
<td>0.3363</td>
</tr>
<tr>
<td>2.8</td>
<td>0.3264</td>
<td>0.3270</td>
<td>0.3266</td>
</tr>
<tr>
<td>3.0</td>
<td>0.3072</td>
<td>0.3062</td>
<td>0.3084</td>
</tr>
<tr>
<td>(\pi)</td>
<td>0.2782</td>
<td>0.2780</td>
<td>0.2785</td>
</tr>
</tbody>
</table>

In our results, we set \(Pr = 0.72 \). The representation of \(U^+ \), against \(x^+ \) shows the existence, in the plane of symmetry characterized by \(\varphi = 0^\circ \) and \(\varphi = 180^\circ \), of a curvilinear abscissa \(x_e = 0.43 \) privileged wherein \(x_e \) do not depend on the inclination angle \(\alpha \) (Figure 2.a). This independence extends within an area from \(x^+ = 0.2 \) to \(x^+_e = 0.6 \) on the meridian defined by \(\varphi = 90^\circ \) (Figure 2.b).

In these figures, the curve corresponding to the vertical ellipsoid (\(\alpha = 0^\circ \)) is a dividing line between the values relative for \(x_e < 0.43 \) and that on \(x_e > 0.43 \). In the latter, the manners they show increases with the inclination, for \(\varphi = 0^\circ \) and decreases on the meridian of equation \(\varphi = 180^\circ \). In these developments, it is thus observed that the variations of the tangential component are reversed for \(x_e > 0.43 \).

For this privileged abscissa, there is a value at which \(U^+ \) does not depend on the inclination alpha \(\alpha \) and that this region is in the vicinity of 90 ° (Figure 2.c).
The figure 2.d shows that U^+ against x_+ decreases when a/c increases. The change in this component in figure 2.e, illustrates that increasing the ratio a/c reduces the thickness of the boundary layer.

![Figure 2: Meridian Component of the Velocity, for Different Values of α](image)

(a): U^+ against x_+, $\varphi = 0^\circ$ and $\varphi = 180^\circ$; (b): U^+ against x_+, $\varphi = 90^\circ$; (c): U^+ against φ, $x_+=0.24, 0.43, 0.61$; (d): U^+ against x_+, for different values of a/c, $\varphi = 0^\circ, \alpha = 0^\circ$ and 10°; (e): U^+ against y_+, for different values of a/c, $\varphi = 180^\circ$, $\alpha = 0^\circ$ and 10°.

For the privileged abscissa $x_+ = 0.43$, the variation curves of U^+ against y_+ do not depend either to α, for $\varphi = 0^\circ, 90^\circ, 180^\circ$ and the figures 3.a and 3.b illustrate this phenomenon.

![Figure 3. Meridian Component of the Velocity Against Y^+, For Different Values of α and $X_+=0.24, 0.43, 0.61$](image)

(a): $\varphi = 0^\circ$ et 180° ; (b): $\varphi = 90^\circ$.

These figures confirm that the thickness of the boundary layer increases with the curvilinear abscissa and the meridional velocity varies from zero at the wall to a zero value outside of the boundary layer.
through positive values within thereof. In the case of a non-axisymmetric system, it looks as much on the azimuthal component dimensionless W^+ and, the figures 4.a and 4.b confirm constantly for $x_+ = 0.24$, the angle of inclination has no influence on this component and is thus dependent on the latter regardless of the value of y_+ (Figures 5.a and 5.b).

Figure 4. Azimuthal Component of the Velocity, for Different Values of α
(a) W^+ against x_+, $\varphi = 45^\circ$ and 135°; (b) W^+ against φ, $x_+= 0.09, 0.24, 0.61$

Figure 5. Azimuthal Component of the Velocity Against Y^+, for Different Values of α and $X_+= 0.09, 0.24, 0.50, 0.70$.
(a) $\varphi = 45^\circ$; (b) $\varphi = 90^\circ$

Figure 5.c. Azimuthal Component of the Velocity, for Different Values of α,
(c) W^+ Against X_+, $\varphi = 90^\circ$; (d) W^+ Against φ, $X_+ = 0.50, 0.70$

However, we can add notes as, there is one and only one point on the wall of the ellipsoid for which W^+ is not dependent on the inclination, for $x_+ \geq 0.24$ and even for $\varphi = 90^\circ$ and $0.20 \leq x_+ \leq 0.60$ (Figures 5.c and 5.d).
Figure 6: Azimuthal Component of the Velocity, for Different Values of \(\alpha \)

(a) \(W^+ \) against \(x_+ \), \(\varphi = 90^\circ \); (b) \(W^+ \) against \(\varphi \), \(x_+ = 0.09 \); (c) \(W^+ \) against \(y_+ \), \(\varphi = 90^\circ \), \(x_+ = 0.09 \) and 0.7; (d) \(W^+ \) against \(x_+ \) for different values of \(a/c \), \(\varphi = 45^\circ \); (e) \(W^+ \) against \(y_+ \) for different values of \(a/c \), \(\varphi = 45^\circ \) and \(\varphi = 90^\circ \)

The Figures 7.a, 7.b illustrate the evolution of the normal component dimensionless \(V^+ \), for several values of \(\alpha \), \(\varphi = 0^\circ \) and \(180^\circ \). The curves corresponding to \(\varphi = 0^\circ \) and \(\varphi = 180^\circ \) evolve from either side and relating to the axisymmetric flow (\(\alpha = 0^\circ \)). On the meridian defined by \(\varphi = 90^\circ \), \(V^+ \) no longer depends on the inclination for \(0.2 \leq x_+ \leq 0.6 \). However, \(V^+ \) admits one to three privileged points for a fixed value, for example \(x_+ = 0.32 \), then, the coordinates points are defined by \((x_+ = 0.32, \varphi = 0^\circ)\), \((x_+ = 0.32, \varphi = 90^\circ)\) and \((x_+ = 0.32, \varphi = 180^\circ)\) (Figure 7.c).

Figures 7.d and 7.e illustrate the changes of the normal component as a function of \(y_+ \), for multiple values of \(a/c \). In the latter it show at the equator the fluid particles are sucked towards the wall. In addition, \(V^+ \) decreases with the growth of \(a/c \).
Effect of Inclination and Form Factor on a Study of the Three-dimensional Free Convection around an Ellipsoid of Revolution

Figure 7. Normal Component of the Velocity, for Several Values of α

(a): V_+ against x_+, for $\Phi = 0^\circ$ and 180°; (b): V_+ against x_+, $\Phi = 90^\circ$; (c): V_+ against Φ, for $x_+ = 0.16, 0.32, 0.50, 0.70$; (d): V_+ against y_+, for several values of a/c, $\Phi = 0^\circ$; (e): V_+ against y_+, for several values of a/c, $\Phi = 180^\circ$

The dimensionless temperature field has the same features as that of U_+ and the Figures 8.a and 8.b show the existence of privileged points on the wall of the ellipsoid for which T_+ is independent of the inclination α. We also note that the temperature varies weakly with α in the plane of symmetry π_0 (Figure 8.c). Figure 8.d shows the variations of the dimensionless temperature as a function of x_+, for multiple values of a/c. In this figure we can confirm that the temperature decreases with increasing of the values of a/c.

Figure 8. Temperature Profile, for Several Values of α

(a): T_+ against x_+, $\Phi = 0^\circ$ and $\Phi = 180^\circ$; (b): T_+ against Φ, $x_+ = 0.24, 0.43, 0.61$; (c): T_+ against y_+, $x_+ = 0.24$, $\Phi = 0^\circ$ and $\Phi = 180^\circ$; (d): T_+ against x_+ for several values of a/c, $\Phi = 90^\circ$
In the case of dimensionless quantity NuG^{-1}, we constantly observe the peculiarities concerning the temperature. In case of presence of convection due to movement of a fluid in laminar flow, the heat transfer will be made primarily by fluid displacement and certainly, the number is none other than the dimensionless temperature gradient at the wall, while its variations depend to exchanges between the wall and the fluid. In our case, given the hypothesis relating thereto, we note that the dimensionless quantity NuG^{-1} present in the menner regressive. This indicates that, the heat exchange decreases gradually as one moves the wall according to the movements of the particles following dimensionless directions x^+ and y^+. Furthermore, it is independent of angle α with the dimensionless direction x^+ on the meridian equation $\varphi = 90^\circ$ (Figure 9.a, 9.b and 9.c).

Figure 9.c shows that the dimensionless quantity present in way regressive in terms of x^+. However, the heat exchange is increasingly significant by increasing the form factor of definition.

Figures 10.a and 10.b show some curves of changes in the coefficient of friction Cfu to show the existence of maximum warning of separation of the boundary layer. These points are naturally closer to the pole of ellipsoid for $\varphi = 0^\circ$ that for $\varphi = 180^\circ$.

Figure 11, showing the changes in Cfw against φ, shows that it is zero in the plane of symmetry and confirms that this size increases with α.
Effect of Inclination and Form Factor on a Study of the Three-dimensional Free Convection around an Ellipsoid of Revolution

Figure 11. Azimuthal Friction Coefficient Against φ, for Different Values of α

(a) C_{fw} for $x_+=0.09$ and 0.50; (b) C_{fw} for $x_+=0.09,0.24,0.50,0.70$, $\alpha=5^\circ$ and 15°

Increasing the amplitude of this dimensionless magnitude in the negative pole confirms, that a strong adherence of fluid particles to the wall when the body is strongly inclined.

Figure 12. Azimuthal Friction Coefficient against $x+$, for Different Values of A/C.

(a) C_{fw}, for $\alpha=0^\circ$ and 10°, $x+=0^\circ$; (b) C_{fw} for $x+=45^\circ$, $\alpha=0^\circ$ and 10°

The variations of C_{fu} in the figure 12.a show the existence of maximum, warning detachment boundary layers at abscissa closer to the equator. As for C_{fw} it depends relatively little of the form factor, and figure 12.b illustrates its developments.

5. **CONCLUSION**

In this article, we presented the distributions of speed and temperature as well as the local values of Nusselt number and friction coefficients. In the case of a pure natural convection, it appears in the calculations that on the wall of the ellipsoid, there seems exist the privileged coordinate values for which the tilt angle has little effect on the dynamic and thermal quantities. Their position depends of course on the curvilinear abscissa and in the vicinity of the meridian equation $\varphi=90^\circ$.

In these results, a presence of suction of the particles on the lower meridian, when the body is strongly inclined and this phenomenon causes a slight disruption. After the analyzes, we find that the thickness of the boundary layer varies and depends on the curvilinear abscissa and of the tilt. The results for the normal component according to the normal coordinate illustrate its evolution in terms of thickness.

In this work, we reported the effects of the inclination angle of the body, by considering also the variability of the form factor.

In this study, the calculations were made beyond the equator in order to assess the adherence of the fluid on the wall and locate the boundary layer separation points.
In general, they are, on the upper part of the ellipsoid, to much larger values of the azimuthal angle that the curvilinear abscissa is greater.

Soon, it would be desirable to consider the transfer of heat and pulse based on variations of the form factor and inclination or even coupled to a material transport and take into account the unstable boundary conditions.

REFERENCES

Effect of Inclination and Form Factor on a Study of the Three-dimensional Free Convection around an Ellipsoid of Revolution

AUTHOR’S BIOGRAPHY

Dr. U. Canissius, was born in Diego Suarez, Madagascar. He did his studies from the prestigious Antsiranana University, in the area of factory mechanics and fluid mechanics, in the energy option. He has published a number of papers in various national and international journals & conferences.

Since 2012, he is teacher researcher, attached to the department of Mechanical and Metrology at the Antsiranana University. Currently, he is responsible of Master parcour in Civil Engineering and of the Metallic Structure to the ENSET School at the Antsiranana University, Madagascar.