Wavelengths of the 4d – 4p, 0 – 1 X-ray Laser Transitions in Ni-Like Ions

E. P. Ivanova
Institute of Spectroscopy, Russian Academy of Sciences, Moscow, Troitsk, Russia

Abstract: The energies of X-ray laser (XRL) transitions in ions of the Ni-like sequence are refined by relativistic perturbation theory with a zero-approximation model potential calculations. The calculated energies of two strongest 4d – 4p, J = 0 – 1 XRL transitions are corrected by extrapolation of the experimental differentials of XRL transition energies \(\Delta E_{\text{las}} = E_{\text{las}} - E_{\text{las}} \); i.e., the differences between transition energies of neighboring ions, which weakly depend on Z (especially, in the region \(Z \leq 50 \)). The final results coincide with the known experimental data to within the experimental error. It is shown that the 3d\(^{10}\)4d\(^{1}\) J = 0 – 3d\(^{10}\)4p\(^{1}\) J = 1 laser transition with \(\lambda = 67.38 \) nm is possible in Sm\(^{45+}\) and the 3d\(^{10}\)4d\(^{1}\) J = 0 – 3d\(^{10}\)4p\(^{1}\) J = 1 transition with \(\lambda = 67.47 \) nm is possible in Gd\(^{46+}\). These wavelengths are promising for developing the next generation of photolithography: at present, multilayer mirrors with the reflection coefficient > 60% are designed for this wavelength range.

1. INTRODUCTION

X-ray laser (XRL) in Ni-like ions was first demonstrated in 1987, where amplification was observed at the wavelengths \(\lambda \approx 65.83 \) and \(\approx 71 \) Å on J = 0–1, 4d - 4p transitions [1] in europium laser plasma (Eu\(^{35+}\)). Later a series of results demonstrating amplification at the wavelengths of these transitions in Yb\(^{42+}\) were obtained [2]. Amplification in laser plasma of tantalum (Ta\(^{45+}\)) and tungsten (W\(^{45+}\)) in the “water window” boundary region with \(\lambda \approx 44.8 \) Å and \(\approx 43.2 \) Å, respectively, was detected in 1990 in [3]. The shortest wavelength of \(\approx 35.6 \) Å of the Ni-like XRL series was recorded in Au\(^{56+}\) [4]. In the theoretical study [5], the energies of 4d – 4p transitions in the Ni-like XRL series were calculated using the relativistic multiconfigurational Hartree-Fock method. Some possible laser lines were predicted in [5] for ions with \(Z \geq 46 \). The wavelengths were determined by fitting \(ab \text{ initio} \) calculations to the known experimental wavelengths followed by interpolation and extrapolation to the region of small nucleus charges to \(Z = 46 \). In [6], the wavelengths of Ni-like XRLs with low \(Z \) were measured in the range 39 < \(Z < 49 \). Later in [7], Ni-like ion spectra were theoretically and experimentally analyzed, the wavelengths of the 3d\(^{10}\)4d\(^{1}\)S\(^{-}\) – 3d\(^{10}\)4p\(^{1}\)P\(^{+}\) laser transitions in ions Y\(^{11+}\), Mo\(^{14+}\), and these transitions in As\(^{5+}\), Br\(^{6+}\), and Rb\(^{9+}\) ions were identified for the first time. The review of the sequential development of the XRL engineering since the very first experiments, their development motivation in view of possible applications was published in [8], where all experimental XRL wavelengths determined by that time for Ne- and Ni-like ions were presented.

In this paper we refine the theoretical data [5] for two 3d\(^{10}\)4d \([J = 0]–3d^{10}4p \([J = 1]\) laser transitions in Ni-like ions with \(Z \leq 79 \); the refinement is possible because of the use of high-precision energies of XRL transitions at initial points of the sequence for \(Z = 36–48 \) [6,7]. We extrapolate the differentials of transition energies \(E_{\text{las}} - E_{\text{las}} \), i.e., the differences between transition energies of neighboring ions, which weakly depend on \(Z \) (especially, in the region \(Z \leq 50 \)). The calculation will allow us to determine the ions for which the XRL wavelengths lie in the range of 67.0–67.5 Å. These wavelengths are promising for developing the next generation of photolithography: at present, multilayer mirrors with the reflection coefficient > 60% are designed for this wavelength range [9].

2. ENERGY OF THE UPPER ACTIVE LEVEL E2 ALONG THE ISOELECTRONIC SEQUENCE

The Ni-like scheme of an XRL is shown in Fig. 1, there are other XRL transitions in heavy ions which are not considered here. The inversion is due to strong collisional excitation of the 3d\(^{10}\)4d \([J = 0]\) upper working level by electron impact and rapid radiative depletion of the 3d\(^{10}\)4p \([J = 1]\) lower working level. Two 3d\(^{10}\)4d \([J = 0]\) levels denoted by E1 and E2 are shown in Fig. 1.
The working XRL level is denoted by E_2, it lies above the E_1 level along the isoelectronic sequence. In Ni-like ions there are three rapidly decaying (resonant) levels of the 3d^94p configuration denoted as M_1, M_2, and M_3. The M_2 level is the lower working level of an XRL for the entire nickel isoelectronic sequence, the M_1 level is the lower working level for heavy ions starting with $Z = 62$. The M_3 level decays to the ground state significantly weaker than M_1 and M_2; therefore, the gain on the E_2–M_3 transition is weak and is not considered here.

Figure 1. Two principal XRL transition in Ni-like ions

Table. The wavelengths of two laser transitions E_2 – M_2 and E_2 – M_1 (Å) in Ni-like ions, calculated in the present work for comparison with data of [5,6], the experimental wavelengths [6,8] are also given.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Pd</td>
<td>146.77</td>
<td>146.5</td>
<td>148.10</td>
<td>146.8</td>
<td>142.24</td>
<td>142.93</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>138.92</td>
<td>138.6</td>
<td>139.92</td>
<td>138.9</td>
<td>134.42</td>
<td>135.07</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>131.65</td>
<td>131.4</td>
<td>132.56</td>
<td>131.7</td>
<td>127.27</td>
<td>127.93</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>125.34</td>
<td>124.9</td>
<td>125.89</td>
<td>125.8</td>
<td>120.88</td>
<td>121.42</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>119.00</td>
<td>119.0</td>
<td>119.82</td>
<td>119.7</td>
<td>114.80</td>
<td>115.44</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>113.70</td>
<td>113.6</td>
<td>114.25</td>
<td>109.27</td>
<td>104.13</td>
<td>104.83</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>108.52</td>
<td>108.7</td>
<td>109.14</td>
<td>111.0</td>
<td>104.13</td>
<td>104.83</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>103.71</td>
<td>103.9</td>
<td>104.40</td>
<td>99.32</td>
<td>100.09</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Xe</td>
<td>99.10</td>
<td>99.65</td>
<td>100.2</td>
<td>99.8</td>
<td>94.71</td>
<td>95.66</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>94.92</td>
<td>95.64</td>
<td>95.93</td>
<td>90.50</td>
<td>91.53</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>91.03</td>
<td>91.90</td>
<td>92.12</td>
<td>85.56</td>
<td>87.65</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>87.43</td>
<td>88.40</td>
<td>88.55</td>
<td>89.0</td>
<td>82.88</td>
<td>83.99</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>84.04</td>
<td>85.10</td>
<td>85.19</td>
<td>86.0</td>
<td>79.42</td>
<td>80.55</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>80.85</td>
<td>82.00</td>
<td>82.03</td>
<td>82.0</td>
<td>76.15</td>
<td>77.29</td>
</tr>
<tr>
<td>60</td>
<td>Nd</td>
<td>77.84</td>
<td>79.06</td>
<td>79.05</td>
<td>79.2</td>
<td>73.06</td>
<td>74.20</td>
</tr>
<tr>
<td>61</td>
<td>Pm</td>
<td>75.03</td>
<td>76.23</td>
<td></td>
<td>70.22</td>
<td>71.27</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Sm</td>
<td>72.37</td>
<td>73.55</td>
<td>73.60</td>
<td>67.38</td>
<td>68.49</td>
<td>68.50</td>
</tr>
<tr>
<td>63</td>
<td>Eu</td>
<td>69.82</td>
<td>71.00</td>
<td>71.00</td>
<td>64.90</td>
<td>65.83</td>
<td>65.83</td>
</tr>
<tr>
<td>64</td>
<td>Gd</td>
<td>67.47</td>
<td>68.58</td>
<td>68.60</td>
<td>62.47</td>
<td>63.30</td>
<td>63.33</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
<td>65.36</td>
<td>66.26</td>
<td>67.00</td>
<td>60.22</td>
<td>60.88</td>
<td>59.00</td>
</tr>
<tr>
<td>66</td>
<td>Dy</td>
<td>63.34</td>
<td>64.06</td>
<td>64.10</td>
<td>58.07</td>
<td>58.57</td>
<td>58.5</td>
</tr>
<tr>
<td>67</td>
<td>Ho</td>
<td>61.35</td>
<td>61.94</td>
<td>62.00</td>
<td>55.91</td>
<td>56.36</td>
<td>56.3</td>
</tr>
<tr>
<td>68</td>
<td>Er</td>
<td>59.38</td>
<td>59.92</td>
<td></td>
<td>53.79</td>
<td>54.23</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Tm</td>
<td>57.45</td>
<td>57.98</td>
<td></td>
<td>51.77</td>
<td>52.20</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Yb</td>
<td>55.57</td>
<td>56.11</td>
<td>56.09</td>
<td>49.80</td>
<td>50.24</td>
<td>50.26</td>
</tr>
<tr>
<td>71</td>
<td>Lu</td>
<td>53.78</td>
<td>54.32</td>
<td></td>
<td>47.94</td>
<td>48.36</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Hf</td>
<td>52.06</td>
<td>52.60</td>
<td></td>
<td>46.11</td>
<td>46.55</td>
<td>46.50</td>
</tr>
</tbody>
</table>
Comparison of the theoretical [5] and experimental [6, 8] results presented in the table shows significant discrepancies between these results in the region Z = 46–49. This is explained by the fact that the wavelengths and gains in the light Ni-like ions were measured after the extrapolation to the region of small Z was performed in [5].

These notations of working levels were introduced in one of the first calculations of atomic characteristics of Ni-like ions [10]. The reason is that, in the jj-coupling scheme for angular momenta used here, the classification of levels E2 and E1, changes along the sequence.

Figure 2a shows the experimental XRL wavelengths of a Ni-like sequence for transitions E2–M2 and E2–M1, which can be represented by smooth curves. Figure 2b shows the differentials of transition energies for neighboring Z-points dE_{Z}^{las} = E_{Z}^{las} - E_{Z-1}^{las} (the value of differential is shown at the middle

Fig.2. (a) Experimental XRL wavelengths in the Ni-like ions: E2–M2 (circles), E2–M1 (triangles). (b) Z-dependence of differentials of the E2–M2 transition energy: E_{Z}^{las} - E_{Z-1}^{las} (solid circles show the data from review [8], squares are the calculated results [5]). The inset shows the extrapolation of differentials from the plot for Z < 49 to the region of Z = 55. Solid circles are the differentials derived from experiments, empty circles are extrapolated results.
The squares show the values of \(\Delta E_{Z,M}^{\text{corr}} \) obtained from the data calculated in [5]. There are three intervals of \(Z \) where the \(E2-M2 \) transition energies were measured for each following value of \(Z \): 31 \(\leq Z \leq 50 \) [6, 8], 57 \(\leq Z \leq 60 \) and 62 \(\leq Z \leq 67 \) [8].

The values of \(dE_{Z}^{\text{corr}} \) for the transition energies in the region 36 \(\leq Z \leq 48 \) measured in [6,7] are represented by a smooth function (see Fig. 2b), which is indicative of a high accuracy of measurements for low values of \(Z \) with the transition energies inaccurate in the fourth significant figure. The values of differentials in the two other intervals demonstrate strong spikes. This suggests that the measurements of the corresponding XRL wavelengths for ions with large nuclear charges may be inaccurate and an additional consideration (improvement) is necessary.

The problem of extrapolation of the \(E2-M2 \) and \(E2-M1 \) transition energies lies in the difficulty of calculating the upper \(E2 \) level—the \(^1S_0 \) state in the \(LS \)-coupling scheme for the angular momenta. For this reason, the data for the \(J = 0 \) energy levels are absent in some detailed calculations of atomic constants of Ni-like ions [11]. The problem of an anomalously large error of the calculation of the \(3d4d \) \([J = 0] \) level in Ni-like ions was discussed in our previous paper [12]. In our approach it is connected with an insufficient accounting for the second-order correlation corrections of a perturbation theory in the interelectronic interaction, which insignificantly vary along the sequence. In addition, the insufficient consideration of relativistic interaction corrections can lead to a more complicated \(Z \) dependence of corrections not taken into account.

The general principles of the method of the relativistic perturbation theory with a zero-approximation model potential (RPTMP) for calculations of energy levels and probabilities of transitions to the ground state of atomic systems with a filled ground state shell are presented in [12]. Here we use this method to calculate the energy levels \(E1, E2, M1, M2, \) and \(M3 \) for the ions of a Ni-like sequence with \(Z = 36-79 \). The main purpose is to determine the correction \(\Delta E_{\text{corr}}(Z) \) to a value \(E2_{\text{in}} \) calculated by the RPTMP method for each \(Z \): \(E2 = E2_{\text{in}} + \Delta E_{\text{corr}} \). To do this, we use the high-precision experimental values of transition energies \(E2 - M2 = E^{\text{las}} \) for \(Z = 36-48 \) from [6] and the well-known \(M2 \) energy values [15]. To determine \(\Delta E_{\text{corr}} \), we extrapolate the differential \(dE_{Z}^{\text{corr}} = E_{Z}^{\text{las}} - E_{Z-1}^{\text{las}} \), shown in the inset in Fig. 2b, to a value of \(Z = 55 \). Starting with \(Z = 49 \), we determine \(E_{Z}^{\text{las}}, \Delta E_{\text{corr}}, \) and \(E2 \) from the values of differentials. \(\Delta E_{\text{corr}}(Z) \) is shown in Fig. 3 as a function of \(Z \). Note that with the \(E2 \) values thus determined the values of \(E^{\text{las}} \) and \(\chi_{Z}^{\text{las}} \) for \(Z \) up to 55 coincide with a good accuracy with the theoretical extrapolation of XRL wavelengths performed in [6]. One can see in Fig. 3 that extrapolation from \(Z = 55 \) to the region of \(Z \sim 65 \) is evident. Extrapolation to the region of \(Z = 79 \) is performed using the experimental measurements of the \(E2-M1 \) transition for \(Z > 72 \).

Fig3. \(Z \)-dependence of the correction \(\Delta E_{\text{corr}} \) to the calculated \(E2_{\text{in}} \) energy
Wavelengths of the $4d - 4p$, $0 - 1$ X-ray Laser Transitions in Ni-Like Ions

The E_1 energy values for the sequence are calculated with a good accuracy. This was demonstrated in [12] and also follows from comparison with the available experimental measurements [15].

The correction function ΔE_{corr} to the calculated E_{2n} level has a maximum at $Z \sim 51$ (Fig. 3). Practical calculations of energy levels of ions along isoelectronic sequences show that the neglected correlation corrections of the second and higher orders weakly change along the sequence. This allows semiempirical extrapolation methods to be developed [16]. The difficulty encountered in calculating the E_2 energy along the Ni-like sequence is the presence of a significant extremum in the function ΔE_{corr} (Fig. 3). The nature of this extremum is connected with a strong coupling between the E_1 and E_2 states. In the zero order approximation, these states are quasi-degenerated, with the E_2 state lying below the E_1 state. The first-order and (partially) higher-order corrections remove the degeneracy and change the positions of levels so that the E_2 level becomes the upper level. The correction to the calculated E_{2n} level is $\sim 52\,000\,\text{cm}^{-1}$ for $Z = 36$ and increases with Z, which suggests that the role of second-order correlation corrections ignored in the calculation becomes more important. The correction reaches its maximum value of $\sim 58\,000\,\text{cm}^{-1}$ at $Z = 51$. It follows from Fig. 3 that the coupling energy of levels E_1 and E_2 increases with Z. This is seen in Fig. 4a which presents the contributions of levels E_1 and E_2 to the upper working E_2 level along the isoelectronic sequence of Ni-like ions. For $Z \leq 51$, the $3d_{5/2}4d_{5/2}$ [$J = 0$] state is dominant in the

![Diagram](attachment:image1.png)

Fig4. (a) Contributions of levels (1) E_1 and (2) E_2 (the squares of elements of the corresponding eigenvector C^2) to the upper working level E_2 along the isoelectronic sequence of Ni-like ions. For $Z \leq 51$, the $3d_{5/2}4d_{5/2}$ [$J = 0$] state is dominant in the classification of the E_2 level, and the $3d_{3/2}4d_{3/2}$ [$J = 0$] state is dominant for $Z > 51$. (b) Ratio of contributions of the lower and upper $3d4d$ [$J = 0$] levels to the active upper E_2 level as a function of Z.

[International Journal of Advanced Research in Physical Science (IJARPS) Page 38]
Classification of the E2 level, while the 3d_{3/2}4d_{3/2} \{J = 0\} state is dominant for Z > 51. At Z = 51 (at the point of a maximum) the quantum numbers in the classification of levels E2 and E1 are interchanged. As Z increases further, the coupling of levels decreases; Fig. 4b shows the ratio of contributions (the squares of eigenvectors) of lower and upper levels E1 and E2 to the active upper E2 level. At Z = 67 the function \(\Delta E_{\text{corr}}\) (Fig. 3) bends and tends to an asymptotic constant value. This part of the curve of \(\Delta E_{\text{corr}}\) is in agreement with the experimental data [2, 3] and the calculation [5].

Such strong interaction of levels is the characteristic of calculations within the \(jj\)-coupling scheme for the angular momenta; in another basis set, for example, in the \(LS\)-scheme, the E1 and E2 states have practically no admixtures. However, the problem of anomalously low accuracy of the E2 energy level is also present in \(LS\)-scheme and is also explained by the weak convergence of a perturbation theory series.

The wavelengths \(\lambda_{\text{las}}\) of laser transitions E2–M2 and E2–M1 obtained in our calculation are summarized in the table. They are compared to the calculated/extrapolated values of [5, 6] and the experimental results of [6, 8]. The first XRLs in the Ni-like sequence were observed in heavy ions with Z = 63, 73, 74, 79, ..., where the error of measurement of \(\lambda_{\text{las}}\) was estimated to be \(\pm 0.03\) nm. On this basis a correct extrapolation to the region of smaller Z was carried out. Subsequently, after special studies of XRLs in the ions of Ag, In, Sn, and Sm [17] the error of measurement became 0.1 nm \(\sim 1\) Å. As a result, as one can see from the first rows of the table, the discrepancy between the wavelengths calculated in [5] and obtained in the precision experiment [6] exceeds 1 Å. It is possible that the accuracy of measurement of \(\lambda_{\text{las}}\) in the first experiments was overestimated. It seems likely that significant errors in measuring \(\lambda_{\text{las}}\) were also observed in other experiments [18], the wavelengths of which are interpreted in Fig. 2b. Note that the values of \(\lambda_{\text{las}}\) obtained by extrapolation in [6] are in good agreement with the experimental data in the region of Z < 55, and they are close to the calculated results [5] for Z > 55.

3. Conclusion

It was possible to construct the curve of corrections \(\Delta E_{\text{corr}}\) (Fig. 3) to the calculated \(E_{\text{corr}}\) level values due to the presence of the precision values of \(\lambda_{\text{las}}\) in the region of 36 \(\leq Z \leq 48\) [6], which allowed us to perform extrapolation with a good accuracy to the region Z \(\sim 60\–65\). Further the curve \(\Delta E_{\text{corr}}\) tends to an asymptotic value in conformity with the experiments [2, 3].

Determination of the Ni-like ions with \(\lambda_{\text{las}}\) lying within the range of 6.7–6.75 nm is the important result of this calculation. It is exactly this range for which normal-incidence multilayer mirrors are being developed at present on the basis of pairs B/La and B4C/La, which are promising for lithography of the next generation [9]. The reflection curves were calculated in [9] for different types of multilayer pairs, some of which exhibit the reflection coefficient exceeding 65%. One can see in the table that \(\lambda_{\text{las}} = 6.738\) nm in Sm\(^{34}\) on the E2 – M1 transition and \(\lambda_{\text{las}} = 6.747\) nm in Gd\(^{36}\) on the E2 – M2 transition. These values coincide with the experimental results to within the experimental error.

References

Wavelengths of the $4d - 4p$, $0 - 1$ X-ray Laser Transitions in Ni-Like Ions

[10] Zhang H L, Sampson DH 1989 At. Data Nucl. Data Tables 43 1-

[12] Ivanova E P 2014 Optics and Spectroscopy 117 167-175

