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Abstract: In this paper an analysis of the geometrical construction of the AdS/CFT Correspondence is made. 

A geometrical definition of the configuration manifold and the boundary manifold in terms of the conformal 

compactification scheme is given. As a conclusion,it was obtained that the usual definition of the 

correspondence [2] is strongly dependent of the unicity of the conformal class of metrics on the boundary. 

Finally, a summary of some of the geometrical issues of the correspondence is made, along with a possible way 

to avoid them. 

 

1. INTRODUCTION 

Gravity/Gauge duality is maybe one of the most important developments of the latest times in String 

Theory. From its very beginning, dual models have been applied in many areas different from High 

Energy Physics or Black Hole Physics. Any branch of Physics that exhibits phase transitions can be 

modeled using dual models [1].  

The central idea of Gravity/Gauge duality is the geometrical connection existing between any Gravity 

Theory (Superstrings, for example) in d+1 dimensions to a QFT living in d dimensions. In fact, we 

could say that we can extract information about QFT from spacetime, and vice versa. This is just a 

conjecture, and it still needs a proof. Once we have established the connection, the next step is writing 

of a proper dictionary, allowing us to switch between Gravity and QFT. 

AdS/CFT Correspondence [2] is the most relevant realization of the Gravity/Gauge duality, but is not 

the only successful one. Some examples of this kind of duality are the Klebanov-Strassler duality [3] 

or the NS5-branes/LST [4]. In all the three cases mentioned above, the bulk is a non-compact 

manifold endowed with gravity, such that the dual gauge theory is encoded in its asymptotic behavior. 

2. ADS/CFT CORRESPONDENCE IN A NUTSHELL 

The most representative duality is the AdS/CFT Correspondence (Maldacena 1998). In this duality we 

link gravity in a weakly curved AdS5 ×  𝑆5  with a CFT in 3+1dimensions, which lives in the 

conformal boundary of AdS. AdS/CFT Correspondence has strong/weak duality too, which relates 

SUGRA backgrounds at strong coupling with CFT at weak coupling. Thanks to this, it has been 

possible to construct toy models for thermal (non perturbative) QCD, as for example, the dual models 

of QGP using Dp/Dq branes as gravitational background.  

The idea behind the AdS/CFT Correspondence is the geometrical connection between the isomeries of 

AdS and the conformal group. To be more precise, since AdS is a maximally symmetric space, its 

isomeries are holomorphic to the Poincare Group. This implies that, at inner level, AdS and any CFT 

are essentially the same thing. The statement of the correspondence is 

𝑍string  𝜑,ℳ = 𝑍𝐶𝐹𝑇[𝜑0 , 𝒪;  𝜕ℳ, 𝜂 ],                                                                                                 (1) 

whereℳ  is the manifold where the gravity lives, 𝜑  is a bulk field with 𝜑0   as the value at the 

conformal boundary  𝜕ℳ. The conformal boundary carries a metric in a fixed conformal class 𝜂. The 

conjecture stablishes that 𝜑0 acts as a Schwinger source for any CFT operator 𝒪 living on 𝜕ℳ. This 

is the essence of the correspondence. 

Some remarks. The conjecture in principle can be made with any background ℳ that satisfies strings 

equation of motion and has the pair (ℳ,𝜂). Since the solution is not unique, i.e., the charts over ℳare 

not trivial; the correlation functions are dependent from the choice of coordinates.  As a conclusion, it 

is possible to obtain different holographies according to the choice of chart. For example, in the 



M. A. Martin Contreras & J. M. R. RoldanGiraldo 

 

International Journal of Advanced Research in Physical Science (IJARPS)                                        Page 27 

Maldacena's original proposal, the Anti de Sitter space is covered partially with a Poincare chart AdS5 

that picks up one of the two folds of the hyperbolic space, fixing a conformal boundary at the origin 

of the radial coordinate of AdS5 . This conformal boundary has a topology of ℝ1,3 . Choices of 

different charts on Anti de Sitter space lead to boundaries as ℝ4, S1 × S3, S1 × ℝ3 or S × ℍ[6]. All of 

these topologies are diffeomorphical between each other. This has deeper implications in the 

foundations of the correspondence, because different charts could lead to different dualities.  

The utility of the correspondence comes in the calculation procedure, encoded in the holographic 

dictionary, which is the relation between the bulk and the boundary physics. Since the Anti de Sitter 

radius and the string length are free parameters, it is possible to take a low energy limit in (1) in order 

to reduce the string generating function to a supergravity one, 

𝑊𝐶𝐹𝑇 𝜑0, 𝒪; 𝜕ℳ, 𝜂 = − ln 𝑍𝐶𝐹𝑇 𝜑0 , 𝒪; 𝜕ℳ, 𝜂 =  𝑍SUGRA  𝜑,ℳ𝑖 𝑖 + 𝑂  
1

𝑁
 + 𝑂  

1

 𝜆
 ,                (2) 

where the sum in the supergravity action appears to take into account the chart dependence. The 

supergravity description is valid only for the large N and large 't Hooft coupling 𝜆. Note that the 

supergravity action can carry divergences due to infinite volume or IR behaviour. These divergenes 

must be renormalized [7] and could lead to anomalies. 

The dictionary is obtained following the saddle point approximation and the functional standard 

techniques from the supergravity on-shell action: 

 𝒪 𝑥1 𝒪 𝑥2 …𝒪 𝑥𝑛  𝐶𝐹𝑇 =
𝛿𝑛

𝛿𝜑0 𝑥1 …𝛿𝜑0 𝑥𝑛  
𝑆SUGRA

on−shell  𝜑0 … |Sources =0.                                         (3) 

Expression (3) tells how to connect fields in both sides. For example, dilaton is related with the string 

coupling. For each possible supergravity action a dictionary can be constructed. This is the path 

followed, for example, in AdS/QCD models [8]. 

3. GEOMETRICAL APPROXIMATION TO THE CORRESPONDENCE 

Geometrically speaking, the correspondence is built up using the complex geometry language. 

Consider an open n+1-dimensional manifold  𝑀, 𝑔 . This manifold 𝑀will be the configuration space 

for all the possible physical states on the bulk. Along with this manifold, we define a closed n+1-

dimensional manifold  𝑀 , 𝑔   with no empty n-dimensional boundary 𝜕𝑀 , such that 𝑀 ⊂ 𝑀 . A 

complete Riemmann metric 𝑔 on 𝑀 is called conformally compact
1
if exists a function 𝑓 ∈ Ω0 𝑀  on 

𝑀  such that 

𝑔 = 𝑓2𝑔,                                                                                                                                               (4) 

with𝑓−1 0 = 𝜕𝑀  and 𝑑𝑓 is not zero on 𝜕𝑀 . Such a function is called a defining function [9]. The 

metric 𝑔  is called compactification of the metric 𝑔. The compactification defines an induced metric 

𝜂 = 𝑔 |𝜕𝑀  on 𝜕𝑀 . 

There are many defining functions, and hence many conformal compactifications of a given metric 𝑔, 

then the choice of 𝜂 is not unique. This problem can be avoided using the conformal class [𝜂] (called 

conformal infinity) of 𝜂 on 𝜕𝑀  defined by conformal transformations of 𝜂. Recall that 𝜂is uniquely 

determined by the pair  𝑀, 𝑔 . Physically, the choice of [𝜂] implies that the causal structure of the 

spacetime is conserved under conformal transformations. The pair  𝜕𝑀 , 𝜂 with 𝜂 ⊂  [𝜂], defines the 

conformal boundary, where the CFT operators live.  

Since the symmetries of 𝑀 and 𝜕𝑀  must be the same
2
, the moduli space of 𝜕𝑀 , M𝜕𝑀 is defined by 

M𝜕ℳ = Teich 𝑀 /MCG 𝑀 , since both manifolds must have the same conformal stucture because 

they are diffeomorphic. Following the discussions above, the entire moduli space of 𝑀, M, is restricted 

by the choice of a conformal class [𝜂], thus not all the metrics 𝑔 on 𝑀will contribute to the partition 

function on the bulk. The restricted moduli space of 𝑀, M 𝜕𝑀 ,𝑔 , is defined as the set of all the 

conformally compact metrics 𝑔 on 𝑀[10]. 

                                                        
1Conformally compact is equivalent to Penrose compact. 
2Both manifolds must have the same causal structure. 
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Under these ideas, the AdS/CFT correspondence can be summarized saying that given any bulk data 

 𝑀, 𝑔 , it is possible to construct (or obtain) boundary  𝜕𝑀 , [𝜂]  by means of the conformal 

compactification scheme (4), i.e., 

𝑍 𝑀 , [𝜂]        
Boundary

=  𝑍 𝑔,𝑀 𝑔∈ℳ 𝜕𝑀 ,[𝜂 ] 

             
Bulk

                                                                                                        (5) 

Following physical arguments from string theory, M must be 10-dimensional.Thus, in order to have a 

conformal boundary as ℝ1,3, M has to be decomposed into 𝑀 = ℍ5 × 𝑋5 , with 𝑋5some compact 

space, such that in the compactification limit 𝑀 ∼ ℝ2,4 ⊂ ℍ5, as in the AdS/CFT correspondence, in 

which M is factorized as 𝐴𝑑𝑆5 ×  𝑆5. The metrics 𝑔 that satisfies these conditions are the so called 

asymptotically hyperbolic Einstein metrics. 

3.1. Geodesic Compactifications 

Any compactification (4) with a defining function given by 𝑓𝑔 = Dist𝑔 𝑥,𝑀 is called geodesic [9, 

10]. These compactifications are useful for computational purposes. In fact, given a conformal infinity 

[𝜂] of 𝑔,𝑀  exists a unique geodesic defining function 𝑓[𝑔] that has 𝜂 ∈  [𝜂] as a boundary metric. 

Following the Gauss lemma, the compactification 𝑔  can be expanded into 

𝑔 = 𝑑𝑟2 + 𝑔𝑓 ,                                                                                                                                       (6) 

where𝑔𝑓  is a family of metrics on 𝜕𝑀 . The Fefferman-Graham expansion [11] of 𝑔 is a truncated 

Taylor-type expansion of the family of metrics  𝑔𝑓 , that depends on the dimensionality of M The exact 

form of the series depends on whether n is even or odd. In a general case, the series can be written as 

𝑔𝑓 = 𝑔 0 + 𝑟𝑔 1 + 𝑟2𝑔 2 + ⋯+ 𝑟𝑛𝑔 𝑛 + terms depending of even or odd 𝑛                            (7) 

where 𝜂: = 𝑔 0  and  the coefficients 𝑔 𝑘 , with 1 < 𝑘 < 𝑛, are locally fixed by the curvature of 𝜂 and 

its covariant derivatives. The extra terms depending on the even-odd character of n are calculated 

from the Einstein equations for  𝜂. 

The 𝑔 𝑛  term is a little more complex. For even dimensions, 𝑔 𝑛 is transverse traceless, but is 

determined by global properties of M. In odd dimensions, 𝑔 𝑛  is not traceless but is still determined 

by global aspects of M. The term 𝑔 𝑛  corresponds to the stress-energy tensor of the CFT living in 

𝜕𝑀 . 

Mathematically, these expansions can be obtained by compactifying the Einstein equations and taking 

Lie derivatives of 𝑔  with 𝑓𝑔 = 0: 

𝑔 𝑘 =
1

𝑘!
ℒ∇𝑓𝑔

 𝑘 𝑔                                                                                                                                       (8) 

If the metric is Hoelder, all the expansions hold up to order 𝑚 + 𝛼, with 𝛼 the Hoelder exponent. 

As a conclusion, knowing 𝑔 0  and 𝑔 𝑛  allows to construct the bulk metric field g from the expansion 

(7). The real problem here is to now the convergence of the series and how its inclusion may 

introduce anomalies [12]. 

3.2. General Decomposition of M 

Until now, all of the approach to the conjecture was classical, i.e., real manifolds only. A quantum 

approach (thinking on strings instead of supergravity) requires a more general factorization 𝑀 = 𝑋 ×
 𝑌, where 𝑋 ⊂ ℍ   and Y is a 5-dimensional Calabi-Yau manifold. The Calabi-Yau manifold can be 

justified on the grounds that classical mechanics requires a simplectic structure while quantum 

mechanics requires complex structure to improve unitarity. The main problem with this structures lies 

on the construction of Calabi-Yau metrics. This problem can be partially avoided by considering Y as 

a 5-dimensional Sasaki-Einstein manifold [13].   

4. GEOMETRICAL ISSUES 

As it was said above, the central idea for the construction of the conjecture is the existence of a 

conformal infinity [𝜂] that fixes a conformal boundary 𝜕𝑀 . This process is highly depending on the 
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convergence of the Fefferman-Graham expansion (7), which could introduce undesirable anomalies 

due to the holographic renormalization. But this is not the only problem.  

In a phenomenological approximation, gravity/gauge duality suggests that any quantum field theory 

must have a string dual. The large N and large 𝜆  limits restrict the possible dual models to the 

AdS/CFT correspondence, which is no realistic: our observable world has scale dependence. Leaving 

aside the limits, to obtain a non-conformal holography would imply the naive idea of taking a 

different background from Type IIB supergravity. 

Skenderis and Taylor gave advances in this scenario with their precision holography [14]. The idea is 

to categorize all the possible X manifolds in the decomposition 𝑀 = 𝑋 ×  𝑌  into spaces that are 

asymptotically AdS and those whose not. Asymptotically AdS spaces are related to the usual 

AdS𝑛+2 × 𝑆8−𝑛  through a Weyl transformation. This transformation redefines the coupling constant 

of the QFT on the conformal boundary including an energy scale with no trivial running. As a 

conclusion from [14], only on asymptotically AdS spaces is possible to do nonconformal holography. 

This implies that holographic extension only can be made on AdS-like spaces. The socalled bottom up 

models (as the hard wall model [16], soft wall model [15] and the extended version of these models 

[17,18]) use this idea: it is possible to deform AdS background introducing a brane or some extra 

fields that couple with gravity. The effect of these insertions is, essentially, the appearance of an 

energy scale. 

Another issue arises when the index theory comes to play. Following [9, 13], the conjecture is build 

up in conformal boundaries, where the index of any pseudodifferential operator is well defined. When 

closed and compact manifolds are considered, index theorem fails. This problem lead to the 

consideration of the definition and the role of the boundary in AdS/CFT correspondence [10]. 

5. CONCLUSIONS 

AdS/CFT correspondence is strongly related to the concept of conformal boundary. The construction 

of this boundary is dependent on the chosen charts, thus the holographic dictionary (3) is not 

univocally. The usual chart used to do holography is the Poincare chart. Non-conformal extensions 

are made relaxing the conformal symmetry of AdS5 × 𝑆5. 

The choice of a Calabi-Yau (or a Sasaki-Einstein) manifold as the compact space in the factorization 

AdS5 × 𝑌5, besides the relaxation of the large N and large 𝜆 limits could lead to string/QFT duality. 
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