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Abstract: Due to off-center relativistic motion of the charged spectators and the local momentum-imbalance of the
participants, a short-lived huge magnetic field is likely generated, especially in relativistic heavy-ion collisions. In
determining the temperature dependence of bulk and shear viscosities of the QCD matter in vanishing and finite
magnetic field, we utilize mean field approximation to the SU(3) Polyakov linear-sigma model (PLSM). We compare
between the results from two different approaches; Green-Kubo correlation and Boltzmann master equation with
Chapman-Enskog expansion. We find that both approaches havealmost identical results, especially in the hadron
phase. In the temperature dependence of bulk and shear viscosities relative to thermal entropy at the critical tem-
perature, there is a rapid decrease in the chiral phase-transition and in the critical temperature with increasing
magnetic field. As the magnetic field strength increases, a peak appears at the critical temperature (Tc). This can
be understood from the small drop on the thermal entropy atTc, which can be interpreted due to instability in the
hydrodynamic flow of the quark-gluon plasma and soft statistical hadronization. It is obvious that, increasing magnetic
field accelerates the transition from hadron to QGP phases (inverse catalysis), i.e., taking place at lower temperatures.

Keywords: Chiral transition, Magnetic fields, Magnetic catalysis, Critical temperature, Viscous properties of
QGP

1. INTRODUCTION

Recently, the study of the influence of strong magnetic field on Quantum Chromodynamics (QCD) apparently gains
increasing popularity among particle physicists. Such a strong magnetic field can be reproduced in various high-energy
regimes such as early universe and non-central heavy-ion collisions (HIC) [1, 2]. In the heavy-ion experiments, a huge
magnetic field can be created due to the relativistic motion of charged spectators and the local momentum-imbalance of the
participants. At SPS, RHIC and LHC energies, the expected magnetic field ranges between0.1m2

π,m2
π and10− 15m2

π,
respectively [1, 3], wherem2

π ∼ 108 Gauss.
The influence on QCD doesn’t only cause catalysis of the chiral symmetry breaking [4, 5] but also modifies the chiral
phase structure of the hadron production. Also, it changes the nature of the chiral phase-transition [6–8] and the energy
loss due to quark synchrotron radiation [3, 9]. Furthermore, the magnetic field does not only come up with essential
effects during the early stages of HIC, but also during the later ones, where the response of the magnetic effect is assumed
to have a large in-medium-dependence. The latter depends onthe variation of the magnetic diffusion time [3, 9] and the
electrical conductivity which are medium depending [10, 11].
The description of the chiral and deconfinement phase-structure of the hadrons, the characterization of the QGP properties
and the definition of the critical endpoint (CEP) are examples on significant researches conducted during last decades. The
transport properties are particularly helpful in characterizing strongly interacting QCD matter, such as the phase transition,
the critical endpoint, etc. [12]. The viscous transport properties have been reviewed in Ref. [13]. The response of the QCD
matter to an external magnetic field can be described by the transport coefficients, such as bulk and shear viscosities. In
the present study, we extend our previous work [14], where the temperature dependence of bulk and shear viscosities was
deduced from SU(3) PLSM to a finite magnetic field [15]. The bulk [ζ(T, eB)] and shear [η(T, eB)] viscosity normalized
to the entropy densitys(T, eB) shall be calculated at finite temperatures and magnetic fieldstrengths. We also address
the chiral and deconfinement phase-transitions in finite magnetic field.
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First, we recall that so-far various LSM-calculations havebeen performed in order to determine the viscous propertiesof
the QCD matter [16–18]. Based on Boltzmann-Uehling-Uhlenbeck (BBU) equation and Green-Kubo (GK) correlation,
η/s has been estimated in the large-N limit [16]. Also,ζ/s in the large-N limit has been calculated from Boltzmann-
Uehling-Uhlenbeck [17]. From relaxation time approximation (RTA) and BUU equation, the shear and bulk viscosity
have been calculated in SU(2) LSM [18]. Second, from BUU equation with relaxation time approximation, some of such
dissipative properties haven been studied from the hadron resonance gas (HRG) model with excluded-volume corrections
as function of temperature and baryon chemical potential [19].
In the present work, it is assumed that the temperature dependence of QCD viscous properties such as bulk and shear
viscosity are strongly affected by the huge short-lived magnetic field, which can be generated in relativistic heavy-ion
collisions. We study their dependence on various magnetic field strengths. We present a direct estimation for both types
of viscosity coefficients from PLSM by using BUU and GK approaches. For the first time, a systematic study in SU(3)
PLSM in vanishing and nonzero magnetic field is presented. Such a way we can compare between the results from these
two different approaches. A rapid decrease in the chiral phase-transition and in the critical temperature with increasing
magnetic field is observed. Increasing magnetic field is accompanied by phase transitions that take place at lower critical
temperatures relative to the ones at vanishing magnetic fields. In other words, increasing magnetic field leads to a decrease
in the corresponding critical temperature (inverse catalysis).
This paper is organized as follows, we briefly describe PLSM in mean field approximation in section in which information
about hadron matter in the presence of magnetic field is included. BUU and GK approaches are introduced in section and
elaborated in Appendices and , respectively. The temperature dependence of the relaxation time and the bulk and shear
viscosities normalized to the thermal entropy at finite magnetic field strength and vanishing chemical potential shall be
elaborated in section . This is followed by the conclusions in section .

2. REMINDER TO SU(3) L INEAR -SIGMA M ODEL WITH M EAN FIELD APPROXIMATION

The exchange of energy between particle and antiparticle attemperature (T ) and baryon chemical potential (µf ) can be
included in the grand canonical partition function (Z),

Z =

∫

∏

a

DσaDπa
∫

DψDψ̄exp





∫

x

(L+
∑

f

µf ψ̄fγ
0ψf )



 , (1)

where
∫

x
≡ i

∫ 1/T

0
dt

∫

V
d3x andV is the volume of the system of interest. The subscriptf refers to quark flavors

and thereforeµf is the chemical potential for quark flavorsf = (l, s, l̄, s̄). One can define a uniform blind chemical
potentialµf ≡ µu,d = µs [20–22] as a result of the assumption of symmetric quark matter and degenerate light quarks.
L is a Lagrangian coupled the chiral LSM Lagrangian with the Polyakov loops potential,L = Lchiral − U (φ, φ∗, T ).
More details about the PLSM model can be found in Refs. [23–25]. Moreover, the free energy can be given asF =
−T · log[Z]/V or

F = U(σl, σs) + U(φ, φ∗, T ) + Ωq̄q(T, µf , B) + δ0,eB Ωq̄q(T, µf ). (2)

• The purely mesonic potential is given as

U(σl, σs) = −hlσl − hsσs +
m2

2
(σ2

l + σ2
s)−

c

2
√
2
σ2
l σs

+
λ1
2
σ2
l σ

2
s +

(2λ1 + λ2)

8
σ4
l +

(λ1 + λ2)

4
σ4
s . (3)

• In the present work, we implement the polynomial form of the Polyakov loop potential [26–29],

U (φ, φ∗, T )

T 4
= −b2(T )

2

(

|φ|2 + |φ∗|2
)

− b3
6

(

φ3 + φ∗3
)

+
b4
16

(

|φ|2 + |φ∗|2
)2

, (4)

whereb2(T ) = a0 + a1 (T0/T ) + a2 (T0/T )
2
+ a3 (T0/T )

3. With the parametersa0 = 6.75, a1 = −1.95,
a2 = 2.625, a3 = −7.44, b3 = 0.75 andb4 = 7.5 [26], the pure gauge QCD thermodynamics is well reproduced.
For a better agreement with lattice QCD simulations, the critical temperatureT0 is fixed at187 MeV forNf = 2+1
[28].

• The quarks and antiquark contribution to the medium potential can be divided into two regimes.
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– In vanishing magnetic field (eB = 0) but at finiteT andµf [30],

Ωq̄q(T, µf ) = −2T
∑

f

∫ ∞

0

d3~p

(2π)3
ff (T, µ). (5)

When introducing Polyakov-loop corrections to the quark’sdegrees of freedom, then the quark Fermi-Dirac
distribution function becomes

ff(T, µ) = ln

[

1 + 3

(

φ+ φ∗ e−
Ef−µf

T

)

× e−
Ef−µf

T + e−3
Ef−µf

T

]

, (6)

whereEf = (m2
f+p

2)1/2 is the dispersion relation off -th quark flavor. For antiquarks,φ andφ∗ are replaced
with each other and the chemical potential−µ should be replaced byµ.

– In nonzero magnetic field (eB 6= 0) but at finiteT andµf , the concepts of Landau quantization and mag-
netic catalysis, where the magnetic field is assumed to be oriented alongz-direction, should be implemented.
According to the magnetic catalysis [31],

∫

d3p

(2π)3
−→ |qf |B

2π

∑

ν

∫

dpz
2π

(2− δ0ν), (7)

Ωq̄q(T, µf , B) = −2
∑

f

|qf |B T
(2π)2

∞
∑

ν=0

(2− δ0ν)

∫ ∞

0

dpz ff (T, µ, eB). (8)

The distribution function in finite magnetic field can be given as

ff(T, µ, eB) = ln

[

1 + 3

(

φ+ φ∗e−
EB,f−µf

T

)

e−
EB,f−µf

T + e−3
EB,f−µf

T

]

. (9)

For antiquarks, a similar expression can derived. It is noteworthy highlighting that the dispersion relation in
nonzero magnetic field gets modification as follows.

EB,f =
[

p2z +m2
f + |qf |(2n+ 1− σ)B

]1/2
. (10)

The quantization number (n) is known as the Landau quantum numberν. σ is related to the spin quantum
number,σ = ±S/2 and to the masses of quark-flavorf = l, s with l runs overu andd quarks and the other
subscript stands fors-quarks. For the latter, the massed are directly coupled to the sigma fields

ml = g
σl
2
, ms = g

σs√
2
. (11)

We note that the quantity2n+ 1 − σ can be replaced by sum over the Landau Levels. For completeness, we
mention that2− δ0ν represents degenerate Landau Levels.

When assuming global minimization of the free energy (F ),

∂F
∂σl

=
∂F
∂σs

=
∂F
∂φ

=
∂F
∂φ∗

∣

∣

∣

∣

min

= 0, (12)

the remaining parametersσl = σ̄l, σs = σ̄s, φ = φ̄ andφ∗ = φ̄∗ and their dependences onT , µ and eB can be
determined.

3. APPROACHES

3.1. BOLTZMANN -UEHLING -UHLENBECK (BUU) EQUATION

¿From relativistic kinetic theory, the transport coefficients of the system of interest can be estimated in non-Abelian
external field. At finite baryon (fermion) density, the relaxation time approximation can be applied to the Boltzmann-
Uehling-Uhlenbeck (BUU) equation [18] with Chapman-Enskog expansion. The Bulk and shear viscosities are given as
[18],

ζ(T, µ) =
1

9T

∑

f

∫

d3p

(2π)3
τf
E2

f

[ |~p|2
3

− c2sE
2
f

]2

ff(T, µ), (13)

η(T, µ) =
1

15T

∑

f

∫

d3p

(2π)3
p4

E2
f

τfff (T, µ).
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In a nonzero magnetic field (eB 6= 0), it is convenient to derive the relaxation time approximation formulas for bulk and
shear viscosity. We start with BUU and Chapman-Enskog expansion. More details are elaborated in Appendix . The bulk
and shear viscosities read

ζ(T, µ, eB) =
1

9T

∑

f

|qf |B
2π

∑

ν

∫

dp

2π
(2− δ0ν)

τf
E2

B,f

[ |~p|2
3

− c2sE
2
B,f

]2

ff (T, µ), (14)

η(T, µ, eB) =
1

15T

∑

f

|qf |B
2π

∑

ν

∫

dp

2π
(2− δ0ν)

p4

E2
B,f

τfff (T, µ). (15)

3.2. GREEN-K UBO (GK) C ORRELATION

Corresponding to dissipative fluxes, the Green-Kubo (GK) correlation, which is based on the linear response theory (LRT)
[32, 33], directly relates the transport coefficients to outand in equilibrium correlation. The dissipative fluxes are treated
as perturbations to the local thermal equilibrium. In doingthis, the transport coefficients associated with the conserved
quantities can be formulated as the expected values at equilibrium [32, 33]. The lowest order contribution to bulk and
shear viscosity, respectively [32, 33] are given as

ζ(T, µ) =
3

2T

∑

f

∫

d3p

(2π)3
τf
E2

f

[ |~p|2
3

− c2s E
2
f

]2

ff(T, µ)
[

1− ff (T, µ)
]

, (16)

η(T, µ) =
2

15T

∑

f

∫

d3p

(2π)3
|~p|4τf
E2

f

ff(T, µ)
[

1− ff (T, µ)
]

, (17)

where the Fermi-Dirac distribution function forf -th quark flavorff (T, µ) is given by Eq. (6).
In a nonzero magnetic fieldeB 6= 0 and by using LRT (diagrammatic approach), Appendix , the bulk and shear viscosity,
respectively, can be given as

ζ(T, µ, eB) =
3

2T

∑

f

|qf |B
2π

∑

ν

∫

dp

2π
(2− δ0ν)

τf
E2

B,f

[ |~p|2
3

− c2sE
2
B,f

]2

ff (T, µ, eB)
[

1− ff (T, µ, eB)
]

, (18)

η(T, µ, eB) =
2

15T

∑

f

|qf |B
2π

∑

ν

∫

dp

2π
(2− δ0ν)

|~p|4τf
E2

B,f

ff (T, µ, eB)
[

1− ff (T, µ, eB)
]

. (19)

4. RESULTS

4.1 QUARK RELAXATION T IME

In order to compute bulk and shear viscosities from BUU or GK approaches, Sec. and Sec. , respectively, a reliable
estimation for the relaxation time (τf ) is very essential. In framework of PLSM, the quark flavors represent the effective
degrees of freedom, especially at high temperatures. Thus,the relaxation time of such a quark system is what we need
to estimate for the present work. At low temperatures, the hadronic degrees of freedom, pion and sigma mesons, become
dominant.
For a microscopic consideration, the relaxation time can bedetermined from the thermal average of total elastic scattering
and depends on the relative cross sectionσtr(T ),

τ = [nf 〈υrel(T )σtr(T )〉]−1
, (20)

where〈υrel〉 is the mean relative velocity between the two colliding particles andnf is their number density.
In relativistic kinetic theory, the shear viscosity normalized to thermal entropy (η/s) likely remains unchanged due to the
dynamics of the collisions [35]. In local spacetime coordinates, this ratio gives an estimation for the strength of the cross
sectionσtr in i-th cell [34]

σtr,i(T ) =
4

15

〈p〉i
ρi(4− µi/T )

1

η/s
, (21)
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Fig. 1: (Color online) The relaxation time off -th quark flavor (τf ) is calculated from PLSM in dependence on temperature at vanishing baryon
chemical potential and different magnetic field strengthseB = 0.0 GeV2 (solid) eB = 0.2 GeV2 (dotted) andeB = 0.4 GeV2 (dot-dashed curve).

with 4πη/s sets in the range between1 and4 andρi is energy density. For the sake of simplicity, the temperature
dependence ofσtr,i can be determined from a free massless gas, which is likely related to relativistic collisions. In this
limit, the entropy is given bys/T 3 = gf (2 π

2)/45. At vanishingµi, thenσtr ∼ T−2 [35]. Furthermore, from Bjorken
picture [36, 37],T ∼ τ−1/3, σtr ≈ τ2/3 and the cross sectionσtr ∼ T−2. In light of this, the relaxation time can
approximately be determined from PLSM number density. Its temperature evolution is thus very obvious. The density
dependence requires to keepµi finite in Eq. (21). The present work, in contrary, assumes vanishing chemical potential.
In Fig. 1, a numerical estimation for the relaxation time off -th quark flavor (τf ) in a wide range of temperature and
magnetic field strengthseB = 0.0 GeV2 (solid),eB = 0.2 GeV2 (dotted) andeB = 0.4 GeV2 (dot-dashed curve) is de-
picted. It is obvious that increasing the magnetic field strength lowers the relaxation time, especially at low temperatures.
In other words, the stronger becomes the magnetic field strength the slower is the temperature dependence of the relax-
ation time. In this temperature limit,τf almost exponentially decreases with the temperature. At high temperatures, the
relaxation time becomes nearly temperature independent, regardless a very slow increase inτf is observed with increasing
temperature.

4.2. BULK AND SHEAR V ISCOSITIES FROM BUU AND GK F ORMULATIONS
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(a) BUU µ = 0.0 MeV

eB= 0.0 GeV2

eB= 0.2 GeV2

eB= 0.4 GeV2
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(b) Green-Kubo µ = 0.0 MeV

eB= 0.0 GeV2

eB= 0.2 GeV2

eB= 0.4 GeV2

Fig. 2: (Color online)η/s calculated from PLSM at different magnetic filed strengthseB = 0.0 GeV2 (solid), eB = 0.2 GeV2 (dotted) and
eB = 0.4 GeV2 (dot-dashed) and at vanishing chemical potential is given as a function of temperature. Left-hand panel (a) shows the results form
Boltzmann-Uehling-Uhlenbeck equation, while the right-hand panel (b) presents the results from Green-Kubo correlation.

Fig. 2 depicts the magnetic field effects on the temperature dependence ofη/s at vanishing chemical potential. The solid
curve presents the results at a vanishing magnetic field, while the results ateB = 0.2 and0.4 GeV2 are given as dotted
and dot-dashed curves, respectively. The left-hand panel (a) showsη/s as calculated from Boltzmann-Uehling-Uhlenbeck
equation and the right-panel presents the calculations from GK correlation. The Kovtun, Son, and Starinets (KSS) limit
is represented by dashed line.
It is obvious that both approaches give almost identicalη/s values. Their temperature dependence is almost similar.
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Almost same results have been reported in Ref. [16]. The ratio η/s starts from a very large value at low temperature.
Increasing temperature almost exponentially decreasesη/s. But at high temperature, there is a small increase observed
with increasing temperature. In nonzero magnetic field, there is an obvious enhancement in the rapid decrease relative
to its values at low temperature. Furthermore, increasing the magnetic field strength makes the temperature-dependence
more steeply. It is worthwhile to notice the appearance of characterizing peaks at the critical temperature. Such peaks
are connected with minima at lower temperatures. At high temperature, there is a slight increase inη/s with increasing
temperature. Furthermore, we notice that the resultingη/s seems not depending oneB. Also, we notice that our numerical
estimations forη/s from PLSM is larger than KSS limit.
Some remarks on the peaks that characterize the phase transition are in order now. The magnetic field is believed to keep
some effects from the hadronic phase and affects the particle production and the deconfinement [38]. Accordingly, the
peaks seems to favor two different scenarios. The first one isthe instability in the hydrodynamic flow of QGP [39]. The
second one is the soft statistical hadronization [40, 41]. At high temperatures, the QCD coupling become weak and the
hadrons are entirely liberated into quarks and gluons.

 0

 0.05

 0.1

 0.15

 0.2

 0.5  1  1.5  2  2.5

ζ 
/s

T / Tc

(a) BUU µ = 0.0 MeV

eB= 0.0 GeV2

eB= 0.2 GeV2

eB= 0.4 GeV2
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(b) Green-Kubo µ = 0.0 MeV

eB= 0.0 GeV2
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Fig. 3: (Color online)ζ/s is illustrated as a function of temperature at vanishing chemical potential and various magnetic field strengths,eB = 0.0
(solid), eB = 0.2 (dotted) andeB = 0.4 GeV2 (dot-dashed curve). Left-hand panel (a) shows results formBUU equation. The right-hand panel (b)
gives the results from GK correlation.

Fig. 3 depicts the influence of finite magnetic field on the temperature dependence of the bulk viscosity normalized to
the thermal entropy (ζ/s) at vanishing chemical potential. The solid curve illustrates the results in vanishing magnetic
field. The calculations ateB = 0.2 andeB = 0.4 GeV2 are presented as dotted and dot-dashed curves, respectively. The
left-hand panel (a) showsη/s from Boltzmann-Uehling-Uhlenbeck equation. The right-hand panel is devoted to the same
calculations but from Green-Kubo correlation.
It is obvious that both approaches lead to remarkably almost-identicalζ/s-temperature-dependence. In this regard, even
the magnetic field strength does not matter. In both approaches, increasingeB reduces the value ofζ/s, especially at
low temperatures. At temperatures exceeding the critical one, the influence of the magnetic field strength drastically
reduces. That both BUU and GK produce almost identicalζ/s can be understood when comparing Eq. (15) and Eq. (19).
Furthermore, GK is based on correlation of the transport coefficients in and out of equilibrium, while BUU is a generic
formalism for all possible interaction in the relativisticsystem.
It is assumed that, the bulk viscosity can be understood as a conformal equation of state and is a suitable approximation for
the weak interaction between quarks and gluons [42]. Furthermore,ζ/s is believed to draws a picture about massive-to-
massless particle ratios. At temperatures exceeding the critical one, we noticed that,ζ/s infinitesimally decreases with the
temperature, especially in nonzero magnetic field. This dependence characterizes a tiny weak coupling between quarks
and gluons, where the deconfinement matter becomes dominant. Such negligible monotonic decrease refers to completion
of the phase transition from hadrons to quarks.
Furthermore, we notice that the magnetic field seems to enhance an appearance of characterizing peaks at the critical
temperatures. The peaks are accompanied with minima at low temperatures.

5. CONCLUSIONS

In this paper, we have utilized PLSM with mean field approximation in presence of finite magnetic field in order to
address the chiral and deconfinement phase-transitions. Webriefly described the structure of PLSM and shown possible
modifications due to finite magnetic field.
Studying the magnetic field effects on the transport properties such as bulk (ζ) and shear viscosity (η), elaborates essential
characteristics of the strongly interacting QCD matter andits flow. Both bulk and shear viscosities can be derived from two
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different approaches. We first utilized the Green-Kubo approach for two-point correlation functions from linear response
theory in order to estimate the lowest order of the viscous properties in finite magnetic field. Secondly, we used Boltzmann
master equation with Chapman-Enskog expansion in order to derive the relaxation time approximation formulas for both
bulk and shear viscosities in nonzero magnetic fields. We conclude that both approaches are almost identical, especially
in the hadron phase. This is not the case in the QGP phase. Furthermore, we notice that both quantities (bulk and shear
viscosity) are strongly related to the phase transition andhow it responses to the instability in the hydrodynamical flow of
QGP. Even soft-statistical hadronization leaves fingerprints on bulk and shear viscosity. It is noteworthy mentioningthat,
they are related to some experimental observables at RHIC and LHC [39]. At finite magnetic fields, we have calculated
ζ/s as a function of temperature at vanishing baryon chemical potential. In this regard, we highlight that the speed of
sound (or the equation of state) plays an important role in estimatingη/s.
This result confirms the rapid decrease in the chiral phase-transition as well as considerable drop in the critical temperature
take place with increasing magnetic field. As the magnetic field increases, a peak appears at the critical temperature. This
can be understood from the small decrease in the thermal entropy atTc. The latter can be interpreted due to instability in
the hydrodynamic flow of QGP and soft statistical hadronization. Also, increasing magnetic field accelerates the transition
from hadron to QGP phases, i.e., makes it possible to at lowertemperatures.

V ISCOSITY FROM BOLTZMANN -UEHLING -UHLENBECK (BUU) EQUATION

The coefficients of the spatial components of the differencebetween in- and out-of-equilibrium energy-momentum tensor
with respect to the Lagrangian density define the transport properties of the system of interest [43]. For an equilibrium
state having quark flavorsf , where every quark possesses the momentum~p, the phase space distribution is given byfeq

f ,
Eq. (6). For Fermi-Dirac distribution, the symmetric energy-momentum tensor reads [44]

T µν = −p gµν +H uµ uν +∆T µν , (22)

whereuν|µ being four velocity,p is the pressure, andH = p+ ǫ is the enthalpy density withǫ = −p+ Ts+ ǫfield is the
energy density including the energy density due to the existence of finite magnetic filedǫfield = eB ·M [45] ands is the
entropy density. When adding a dissipative part∆T µν to the energy-momentum tensor, then

∆T µν = η
(

Dµuν +Dνuµ +
2

3
∆µν∂σu

σ
)

− ζ∆µν∂σu
σ, (23)

and the Landau-Lifshitz condition,uµ∆T µν = 0 [44], is satisfied. In local rest-frame, the hydrodynamic expansion reads
[44]

δT ij =
∑

f

∫

dΓ∗ p
i pj

Ef

[

−Af ∂σu
σ − Bf p

ν
fDν

(µ

T

)

+Cf pµfpνf
(

Dµuν +Dνuµ +
2

3
∆µν∂σu

σ
)]

feq
f , (24)

wheredΓ∗ stands for generic phase-space, the sum runs over independent contributions from quarks or antiquarks, i.e.,
assuming point interactions andAf , Bf andCf are functions depending on momentump.
In the framework of PLSM at nonzero magnetic field and taking into consideration the inverse magnetic catalysis and
by implementing Landau quantization [31], a dimension reductiond to d− 2 becomes possible and the magnetic field is
assumed to affect on a point in thez direction,B = B êz. Accordingly, the phase space distribution should be modified
to Eq. (7)

∫

dΓ∗ ≡
∫

d3k

(2π)3
−→ |qf |B

2π

∑

ν

∫

dkz
2π

(2− δ0ν). (25)

Due to symmetry, the integration overBf in Eq. (24) tends to zero and the derivative in local rest-frame vanishes as
well, i.e., ∂ku0 = 0. Thus the summation overµ and ν is equivalent to sum over the spatial indicesρ andσ, i.e.,
pifp

j
fp

σ
fp

ρ
f = |pf |4(δijδσρ + δiσδjρ + δiρδjσ). Also, in local rest-frame,pf = p. Equating both Eqs. (23) and Eq. (22)

straightforwardly determines the dissipative parts (bulkand shear, respectively) of the energy-momentum tensor. Itis
advantageous to work in the local rest frame of the fluid. Thisleads to the bulk and shear viscosity [18]

ζ =
1

3

∑

f

|qf |B
2π

∑

ν

∫

dkz
2π

(2 − δ0ν)
|p|2
Ef

ffAf (26)

η =
2

15

∑

f

|qf |B
2π

∑

ν

∫

dkz
2π

(2− δ0ν)
|p|4
Ef

ffCf . (27)
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For an out-of-equilibrium state, the four velocityuµ(x) shouldn’t necessarily remain constant in space and time. When
assuming a very small departure from local equilibrium,

ff(x, p) = feq
(

ui p
i/T

)

[

1 + φf (x, p)
]

, (28)

where

φf =
[

−Af ∂σu
σ − Bf p

ν
fDν

(µ

T

)

+ Cf pµfpνf
(

Dµuν +Dνuµ +
2

3
∆µν∂σu

σ
)]

. (29)

In order to determineAf andCf , we use Boltzmann master equation [18],

∂ff (x, t, p)

∂t
=

(

∂

∂t
+

∂

∂xi
∂xi

∂t
+

∂

∂pi
∂pi

∂t

)

ff (x, t, p) ≡ C [ff ]. (30)

The right-hand side gives the collision integral. For collisions{i} ↔ {j}), the equilibrium distribution functions are
identical, i.e.,feq

{i} = feq
{j} [18] and the collision integral becomes

C =
∑

{i}{j};f

∑

ν

|qf |B
2π

(2− δ0ν)
1

S

∫

(dkz
2π

)

{i}

(dkz
2π

)

{j}
W ({i}|{j})F [ff ]. (31)

The statistical factorS takes into consideration identical particles in initial state.F [ff ] being Bose-Einstein and Fermi-
Dirac distribution functions [18]. Because of Landau-Lifshitz condition, some constrains can be added toφf (x, p) so that

|φf | ≪ 1 [18]. Furthermore, a particular solution conserving Landau-Lifshitz condition was proposedAf = Apar
f −bEb,f

[18]. Then, bulk and shear viscosity reads

ζ =
1

3

∑

f

|qf |B
2π

∑

ν

∫

dkz
2π

(2 − δ0ν)

[ |~p|2
3

− c2sE
2
B,f

]

ffApar
f , (32)

η =
2

15

∑

f

|qf |B
2π

∑

ν

∫

dkz
2π

(2− δ0ν)
|p|4
EB,f

ffCpar
f . (33)

In relaxation time approximation, the phase space distributions of quarks and antiquarks can be replaced by their equilib-
rium ones;f = feq + δf , whereδf is allowed to be arbitrary infinitesimal, while the collision integral can be given as
Cf = δf/τf [18]. Also, the particular solutionsApar

f andCpar
f are given as [18],

Apar
f =

τf
3T

[ |~p|2
3

− c2sE
2
B,f

]

, (34)

Cpar
f =

τf
2TEf

(35)

The bulk and shear viscosities can be reexpressed (for the sake of simplicity, we give the expressions in local rest-frame
of the fluid),

ζ(T, µ, eB) =
1

9T

∑

f

|qf |B
2π

∑

ν

∫

dkz
2π

(2− δ0ν)
τf
E2

B,f

[ |~p|2
3

− c2sE
2
B,f

]2

ff(T, µ, eB), (36)

η(T, µ, eB) =
1

15T

∑

f

|qf |B
2π

∑

ν

∫

dkz
2π

(2 − δ0ν)
p4

E2
B,f

τfff (T, µ, eB). (37)

The distribution functionff is very similar to the equilibrium phase-space distribution function, Eq. (6). Thus, we merely
have to replace the dispersion relationEf by the modified oneEB,f , Eq. (10).

V ISCOSITY FROM GREEN-K UBO CORRELATION

In order to derive Eqs. (18) and (19) from Green-Kubo formalism, both bulk and shear viscosities are given in Lehmann
spectral representation of the two-point correlation functions as the components of the energy-momentum tensor, suchas
[15]

(

ζ
η

)

= lim
ω→0+

lim
|p|→0+

1

ω

(

1
2
Aζ(ω, |p|)

1
20
Aη(ω, |p|)

)

, (38)
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whereAζ andAη are spectral functions [15]

Aζ(ω, |p|) =

∫

d4x eip·x〈[P(x),P(0)]〉, (39)

Aη(ω, |p|) =

∫

d4x eip·x〈
[

πij(x), πij(0)
]

〉, (40)

with

P(x) = −1

3
T i
i (x) − c2sT

00(x), (41)

πij(x) = T ij(x)− 1

3
δijT k

k (x), (42)

and〈[· · · ]〉 donates an appropriate thermal average.
Details about the deriving shear viscosity shall be presented (bulk viscosity is very similar). We prove both Eqs. (18)
and (19). The Matsubara propagators are used in calculatingthe shear viscosity. The energy-momentum tensor can be
expressed in terms of the Lagrangian density

T µν = −gµνL+
∂L

∂(∂µΦ)
∂νΦ. (43)

For bosons, the viscous stress tensor is entirely determined by the Lagrangian parts which are momentum dependent

πµν =

(

∆µν∆
ρσ − 1

3
∆µρ∆

νσ

)

T ρσ, (44)

where∆µν = gµν −uµuν . In linear response theory (LRT) know as diagrammatic approach, the impact of the dissipative
forces on the energy-momentum tensor can be estimated. It isassumed that these forces are small compared to - the
typical energies of the system of interest - a strongly interacting system [46]. The linear response of the microscopic
viscous stress-tensorπµν to the dissipative forces enables us to relate the correlation function with the macroscopic
(shear) viscosity parameter [47]. By denoting the appropriate thermal average of any two-point function as〈· · · 〉 and
giving it as2× 2 matrix [47], then, the two point correlator of viscous stress-tensor becomes

Πab(|p|) = i

∫

d4x eip·x〈τcπµν(x)πµν (0)〉ab, (45)

wherea, b ∈ [1, 2] represents the thermal indices of the matrix for〈· · · 〉 andτc is the time ordering with respect to a
contour in the complex time plane.

(M = π, σ)

(p)

Q

(k)

Q (p− k)

Q

(k)

Fig. 4: A schematic one-loop diagram.

Also, the diagonal element can be related to the retarded twopoint function of viscous stress-tensor. There are11 compo-
nents corresponding to such functions [46]. The spectral function can be written as

Aη(ω, |p|) = 2 tanh

(

ω/T

2

)

Im Π11(ω, p), (46)

with

Π11(|p|) = i

∫

dΓ∗ N(p, k) D11(k) D11(p− k), (47)

andD11(p) is the scalar part of the11 components of the quark-propagator matrix andN(p, k) containing the numerator
part of two propagators.
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• The11 components of the scalar part of the thermal propagator can be expressed by using the formalism of real-time
thermal field theory (RFT) as

D11(k) =
−1

k20 − E2
B,f + iǫ

− 2πi EB,f (Ek) ff (k)δ(k
2
0 − E2

B,f (k)). (48)

When replacing the momentum indicesp → k in Eqs. (6) and (6), the Fermi-Dirac distribution function and the
modified dispersion relation (ff andEB,f , respectively) can be reexpressed in finite magnetic field and Polyakov-
loop corrections.

• What remains in Eq. (47) stands for Fermions [46],

N(p, k) =
32

3
k0(k0 + ω)k · (k+ p)− 4

(

k · (k + p) +
1

3
k2(k + p)2

)

. (49)

Fig. 4 illustrates one-loop diagram of quark-meson loops (hereπ andσ meson) which can be obtained from the two-point
correlation function of the viscous stress-tensor for the quark constituents at the zero frequency and momentum limit [46].
The dashed lines indicates that the quark propagators have an finite thermal width which can be derived from the quark
self-energy diagrams.
As an example, we estimate the shear viscosity, Eq. (38). Thebulk viscosity can be evaluated in a similar manner. In
PLSM in nonzero magnetic field and by assuming that, the magnetic field is directed alongz-axisB = Bêz, Eq. (25), the
phase space should be modified according to the magnetic catalysis, Eq. (7). Therefore, The shear viscosity reads

η = lim
ω→0+

lim
|p|→0+

ImΠ11(ω, p)

10ω
(50)

=
1

10
lim

ω→0+
lim

|p|→0+
Im

[

∑

f

|qf |B
2π

∑

ν

∫

dk

2π
(2− δ0ν)

(−N)

EB,f (k)EB,f (p+ k)
lim
Γ→0

(

C−/ω

[ω − EB,f (k) + EB,f (p+ k)] + iΓ
+

C+/ω

[ω + EB,f (k)− EB,f (p+ k)] + iΓ

)

]

,

whereC∓ = ∓ff (k)∓ + ff (p+ k)
∓
[∓ω + EB,f (k)]. Γ is the thermal width (or collision rate) of the constituent

particles.Γ y measures the dissipative coefficients such as the shear viscosity.
Similar to Ref. [46], we generalize Eqs. (18) and (19),

lim
p→0

EB,f (p+ k) = EB,f (k), (51)

As given in Ref. [47] and by expandingΓ in a Laurent series [47], the contribution to the shear viscosity can be given as

η =
1

10

|qf |B
2π

∑

ν

∫

dk

2π
(2 − δ0ν)

(−N0)

4E2
B,f (k) Γ

[

I− + I+
]

, with I∓ = lim
ω→0

C∓(ω)

ω
. (52)

HereI∓ stands for an undefined quantity as0/0. Then, we can apply the l’Hospital’s rule [47],

I∓ = lim
ω→0

d
dω {C∓(ω)}

d
dω {ω}

=
1

T
ff (k)

∓
[

1 + ff (k)
∓
]

. (53)

The shear viscosity becomes

η =
1

10T

|qf |B
2π

∑

ν

∫

dk

2π
(2− δ0ν)

(−N0)

4E2
B,f(k) Γ

ff(k)
∓
[

1 + ff (k)
∓
]

, (54)

whereN0 = limω,|p|→0+ N
(

k0 = ±EB,f (k),k,p
)

. Thus, Eq. (49) becomes equivalent to−14k4/3. By linking the

decay width to the relaxation time, the shear viscosity can be defined in Green-Kubo correlation, Eq. (18), and the shear
viscosity reads

η =
2

15T

|qf |B
2π

∑

ν

∫

dk

2π
(2− δ0ν)

k4τf
4E2

B,f(k)
ff(k)

∓
[

1 + ff (k)
∓
]

. (55)
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