Radius of Point's Position and Cycle Time of Point's (Non)Existence

(From Presocratic Well)

Janez Špringer
Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU
info@lekarna-springer.si

Abstract

In this paper according to pseudo-Heracletean dynamics on double surface the radius of the point's position $r=0.6 \times 10^{-11} \mathrm{~m}$ and the cycle time of the point's (non)-existence $t=1.2 \times 10^{-18 s}$ is introduced.

Keywords: Pseudo-Heracletean dynamics on double surface, imaginary self-mass of the point, imaginary mass-radius product, the most preferable inverse spin, three-dimensional spinning, path-translation ratio, Compton wavelength, imaginary speed of the point,real radius of the point's position, real cycle time of the point's (non)-existence

1. Preface

The subject of interest in this paper is with the help of the most preferable inverse spin to find out some new characteristics of the point as a physical entity possessing the imaginary self-mass and speed[1].

2. The most preferable inverse spin of the self-mass of the point

Heracletean world[2] is inhabited by real as well as imaginary self-masses both spinning around with the spin determined by the mass-radius product to inverse spin relation as follows[3]:
$\frac{m r c}{h} \approx \sqrt{\frac{1}{\left(\frac{1}{2-\text { spin }^{-1}}\right)^{2}-1}} \times \frac{\text { spin }^{-1}}{2}$.
Here $\frac{m r c}{h}$ is mass-product expressed in $\frac{h}{c}$ units and spin^{-1} is dimensionless number of the inverse spin.

Let us propose that the relation (1)is valid for the imaginary self-mass of the point being available after the point's disintegration[1], too. To deal with the imaginary masses more convenient is the next form:
$\frac{m r c}{h i} \approx \sqrt{\frac{1}{1-\left(\frac{1}{2-\text { spin }^{-1}}\right)^{2}}} \times \frac{\text { spin }^{-1}}{2}$.
It can be examined that in the above case the next minimal value of $\frac{m r c}{h i}$ is achieved:
$\left(\frac{m r C}{h i}\right)_{\text {minimal }}=2.28454289711128 \ldots$
It happens at the next inverse spin:
$\left(\text { spin }^{-1}\right)_{\text {preferable }}=3.7692924 \ldots$
The above dimensionless number(4)should be taken as the most preferable inverse spin belonging to the self-mass of the point.

3. THE RADIUS OF THE POINT'S POSITION

Knowing the self-mass of the point $m=\frac{\sqrt{k} \sqrt{1-\ln k}}{c} i[1]$ and applying the relation (3) the finding of the point in the next radius is expected:
$r=2.28454289711128 \ldots x \frac{h}{\sqrt{k} \sqrt{1-\ln k)}}$.
The unpredictable point's position is thus of Planck constant $h[4]$ and the dynamic constant $k[5]$ dependent. Inserting the needed values $\left(h=6.62607004 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}[4]\right.$ and $k=$ $\left.6.2723515 \times 10^{-46} \mathrm{~kg}^{2} \mathrm{~m}^{2} \mathrm{~s}^{-2}[5]\right)$ the next radius of the point's position is calculated:
$r=0.59 \times 10^{-11} \mathrm{~m}$.

4. The most preferable path of the self-mass of the point

The inverse spin equals the path-translation ratio $\frac{s}{n}$ of the physical body on its own circumference concluded curved motion on double surface[6]. The same holds true for the self-mass of the point[1]:
spin $^{-1}=\frac{s}{n}=3.7692924 \ldots$
And for the path-translation ratio in three dimensions[7]we have:
$\operatorname{spin}^{-1}(3)=3 x\left(2-\frac{1}{\sqrt{1+\frac{\pi^{2}}{n^{2}}}}\right)$.
Then for the $\operatorname{spin}^{-1}(3)=3.7692924 \ldots$..the most preferable translation of the self-mass of the point ${ }^{n}$ expressed in the units of Compton wavelength is calculated:
$n=3,4935469 \ldots \approx 3 \frac{1}{2}$.
Applying the equation (7) the most preferable path of the self-mass of the point s (being also expressed in the units of Compton wavelength) is given:
$s=\frac{s}{n} \times n=13.1681997 \ldots$
Since Compton wavelength $\lambda_{\text {Compton }}=\frac{h}{m c}$ of the imaginary self-mass is imaginary, the path expressed in meters s $x \frac{h}{m c}$ is imaginary, too.

5. The translation cycle of the self-mass of the point

The most preferable translation n of the self-mass of the point is approximately odd integer-multiple of the half wavelength $\left(7 x \frac{1}{2}=3 \frac{1}{2}\right)$ of that self-mass what means that the concerned wave almost annihilates at each even cycle and steps into existence at each odd cycle again.

6. The time cycle of the self-mass of the point

Since the point after the disintegration[1] alternately exists and almost does not exist anymore the cycle time can be regarded as the time of existence as well non-existence of the self-mass of the point:
$t_{\text {cycle }}=t_{\text {existence }}=t_{\text {non-existence }}=t_{(\text {non)-existence }}$.
The imaginary path of the point expressed in meters $s=13.1681997 \times \frac{h}{m c}(10)$ is passed by the imaginary speed $v=\frac{\sqrt{k}}{m}[1]$ in the real time cycle $t=\frac{s}{v}$:
$t_{\text {cycle }}=13.1681997 \times \frac{h}{\sqrt{k} c}$.
Then with the help of the data from the literature[4],[5] the next value of the time cycle of the selfmass of the point is calculated:
$t_{\text {cycle }}=1.16 \times 10^{-18} s$.
According to the relation(11)that time is at the same time the point's (non)-existence time:
$t_{(\text {non)-existence }}=1.16 \times 10^{-18} s$.

7. Conclusions

Heracletean world is unpredictable in space as well as in time.

8. THE ADDENDUM

The relation (2) could be valid for the other imaginary self-masses $0<m<\frac{\sqrt{k} \sqrt{1-\ln k})}{c} i$ [8], too. The radius of finding such imaginary self-mass is in inverse proportion with that self-mass (3). For instance, the zero self-mass could be found in principle elsewhere on the infinite radius given by the relation(3)what enables the discrete communication between real self-masses[5]. But the time cycle of (non)-existence is of the self-mass independent (12) and thus remains for all imaginary self-masses the same.

References

[1] Špringer J. Relativistic Behaviour of Distance and Time in Heracletean World (From Philosophy to Physics). International Journal of Advanced Research in Physical Science (IJARPS), Volume 2, Issue 10, October 2015, 1-6
[2] Špringer J. Gamma Ray Delay and Dual Aspect of Gravity in Heracletean World (Working Hypothesis).International Journal of Advanced Research in Physical Science (IJARPS), Volume 2, Issue 7, July 2015, 40-43
[3] Špringer J. Particle Radius versus Spin G-Factor (Empirical and Pharmaceutical Approach). International Journal of Advanced Research in Physical Science (IJARPS), Volume 3, Issue 2, February 2016, 1-3
[4] CODATA values of the Fundamental Constants. http://physics.nist.gov/cuu/Constants/. Retrieved June 2016
[5] Špringer J. Discrete Communication in Heracletean World (From Pure Imagination to Precise Reality). International Journal of Advanced Research in Physical Science (IJARPS), Volume 2, Issue 10, October 2015, 1-6
[6] Špringer J. Pseudo-Heracletean Dynamics on Double Surface (Sightseeing Fragments). International Journal of Advanced Research in Physical Science (IJARPS), Volume 2, Issue 12, December 2015, 34-36
[7] Špringer J.Three-Dimensional Spinning of Macro Bodies (Fragment of Fragments). International Journal of Advanced Research in Physical Science (IJARPS), Volume 3, Issue 4, April 2016, 2123
[8] Špringer J.Panta Rei Function and Light Diversity (Exercise on Seventy-Two Decimal Places). International Journal of Advanced Research in Chemical Science (IJARCS), Volume 2, Issue 4, April 2015, 6-12.

ACKNOWLEDGEMENT AND DEDICATION

This fragment is given on light on the eve of the $25^{\text {th }}$ Slovene Statehood day. Gratitude to the light and dedication to the day

AUTHOR'S BIOGRAPHY

JanezŠpringer, is an independent scientist born on the third of March 1952 in the city of Maribor, Slovenia.

