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Abstract: We consider the double-well Duffing oscillator driven by a biharmonic force with frequencies ω and 

Ω, Ω ≫ ω with three different forms of state-dependent time-delayed feedback. The forms of delay time are 

sigmoid, parabolic and Gaussian functions of position variable. We investigate the effect of the parameters 

characterizing the forms of time-delay and the strength of the feedback term on the vibrational resonance with 

specific emphasize on the number of resonances, the maximum value of the response amplitude and the value of 

the amplitude of the high-frequency (Ω) component of the driving force at which resonance occurs. The 

influence of the three types of delay time is found to be nontrivial. Moreover, the number of resonance and the 

response amplitude can be controlled by the parameters characterizing the form of the delay time. 
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1. INTRODUCTION 

Time-delayed phenomena are ubiquitous in many nonlinear dynamical systems because of a finite 

signal propagation time in networks, finite switching speed of amplifiers, finite reaction, memory 

effects and so on [1–3]. When the state of a system at time t depends on the state of the system at one 

or more later times a time-delayed feedback is to be introduced in the mathematical modelling of the 

system. The feedback can be linear or nonlinear. In the nonlinear dynamics literature the influence of 

different types of time-delayed feedback or coupling on the dynamics of linear and nonlinear systems 

are reported. It has been pointed out that time-delay can be a single constant, multiple constants, 

integrative over a finite interval, distributive over an interval with certain specific distributions, state-

dependent and even a random [4]. The effect of certain types of time-delay on bifurcations, chaos and 

synchronization have been investigated. 

In recent years much interest has been focused on the role of time-delay on vibrational resonance. In a 

nonlinear system driven by a biharmonic periodic force with two frequencies ω and Ω with Ω ≫ ω the 

amplitude of response of the system at the low-frequency ω is found to display resonance when the 

amplitude of the high-frequency (Ω) component of the driving force is varied. This high-frequency 

force induced resonance is termed as vibrational resonance [5–7]. The goal of the present paper is to 

report our investigation on the effect of state-dependent time-delayed (SDTD) feedback on vibrational 

resonance. SDTDs were appeared in the modelling of transmission channels of communication 

networks [8], in supply networks as a consequence of transportation of materials [9–11], in population 

dynamics [12] and in engine cooling systems [13].  

There are some notable studies on the dynamics of systems with SDTDs. It is noteworthy to cite some 

of them. Stability theorems of equilibrium points [14–16] and periodic solutions [17,18] and 

numerical analysis of stability of equilibrium points and periodic solutions [19], predictor-feedback 

design [20], rapidly oscillating periodic solutions [21] of a class of equations with SDTDs have been 

reported. Occurrence of Hopf bifurcation with SDTDs in a weakly damped nonlinear oscillator [22] 

and machine-tool vibrations [23, 24] was analysed. Local and global stability analysis for linear and 

nonlinear systems [25] and the existence of periodic solutions in Lotka-Volterra systems [26] were 

studied. Position-dependent axonal conduction time-delays ranging from 0.1ms to 44ms was noticed 

in the mammalian neocertex [27, 28]. Synchronization in a neural network with time-delay depending 

on the distance between neurons was considered [29]. 
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In the present paper, we investigate the vibrational resonance phenomenon in the Duffing oscillator 

with a state-dependent time-delayed feedback and driven by a biharmonic force. The equation of 

motion of the system is  

2 3

0 ( ( ( ))) cos cos ,x dx x x x t x t f t g t           ω β                                                               (1) 

where  ( ( )x t ) is the state-dependent time-delay. We analyse the effect of sigmoid, parabolic and 

Gaussian functional forms of time-delay. The values of the parameters characterizing the functional 

forms of time-delay have a strong influence on number of resonance and the value of the response 

amplitude Q  at which resonance occurs. 

2. EFFECT OF DIFFERENT TYPES OF POSITION-DEPENDENT TIME DELAY 

First we consider the effect of sigmoid state-dependent time-delay. 

2.1. Sigmoid State-Dependent Time-Delay 

We consider the Duffing oscillator Eq. (1) with the time-delay  

0 ,
1 e

( ( ))
px

x t





                                                                                  (2) 

where 0  is a positive constant and p  is a constant. ( )x  is a sigmoid function.  

For Ω≫ ω it is reasonable to assume the solution of Eq. (1) as ( ) ( ) ( , )x t X t t t    where X  and 

  are slow motion with period 2   and fast motion with period 2  , respectively. We are 

interested in the response amplitude Q  at the low-frequency . To compute the response amplitude 

Q  of the slow component X  of ( )x t  we numerically integrate Eq. (1) using the Euler method with 

step size ∆t = 0.001. At each time we calculate   . Since ∆t = 0.001 the values of   must be integer 

multiples of ∆t. In order to make  (x (t)) in multiples of ∆t we write  

010001
( ( )) Int ,

1000 1 e px
x t
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where Int(y) means integer part of y. We leave the solution corresponding to the first 1000 drive 

cycles of low-frequency force as a transient. Then we compute numerically the sine and cosine 

components Qs  andQc , respectively, from the equations 

0

2
( )sin  ,

kT

Q x t t dts
kT

   

0

2
( )cos  ,

kT

Q x t t dtc
kT

                                                                        (4) 

where T = 2π/ω and k = 500. Then
2 2Q Q Q fs c  . 

We fix the values of the parameters in (1) as d = 0.5, 
2

0  = −1, β= 1, f = 0.1, ω= 1, Ω= 10 and 0 = 1. 

When g  is varied for γ = 0 there are two resonances with same response amplitude Q . The 

resonances occur at g = 54 and 115. We denote the values of g at which first and second resonances 

occur as 
(1)

VRg  and
(2)

VRg , respectively. Figure 1 illustrates the variation of Q  with the control 

parameters γ and g for four different values of p. We can clearly notice the effect of γ and p on the 

resonance and on the value of Q . For a fixed value of p the values of g at which resonances occur 

shift towards the origin, that is, VRg  is decreased. 
(1)

VRg  Decreases much faster than 
(2)

VRg  with 

increase in the value of γ. However, Q  at 
(1)

VRg  decreases with γ whereas its value at 
(2)

VRg  increases 

with increase in γ. Figure 2 depicts the nontrivial variation of Q  with the parameter p for  0  = 1  

and γ = 0.4 and for two fixed values of g. For |p| ≫ 1, Q(p) ≈ Q(−p). With respect to p, the response 

amplitude Q is strictly not symmetric about p = 0. The choice p = 0 gives   = 0 /2. In this case time-

delay is a constant. In Fig. 2 for g = 54, Q(p = 0) < Q(p ≠ 0) while for g = 115, Q(p = 0) > Q(p ≠ 0) 

for a wide range of values of p. 
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Fig1. Dependence of Q on the parameters γ and g for four values of p with sigmoid function type delay time   

given by Eq. (2). The values of the parameters are d = 0.5, 
2

0  = −1, β = 1, f = 0.1, ω = 1, Ω = 10 and 0  = 1. 

 

Fig2. (a) Q versus p for g = 54 and 115 at which resonance occurs when γ = 0. Here γ = 0.4 and 0  = 1. The 

time-delay ( )x  is given by Eq. (2). (b) Magnification of subplot (a) in the interval p∈ [−4, 4]. 

In Fig. 3 we plot x (t) versus t for four values of g. We fixed 0 = 1, p = −1 and γ = 0.2. The left 

(right)-panel shows the result for an initial condition chosen in the neighbourhood of the left (right)-

well minimum. For small values of g there are two orbits - one is confined to x < 0 while another is 

confined to x > 0. The values of Q for these two orbits are the same. The value of Q for the orbits 

shown in Figs. 3a and 3e for g = 10 is 1.49. In this figure only the orbit lying in the interval x < 0 is 

shown. Q increases with increase g and at g = 42, Q becomes a maximum with the value 2.3. At 

resonance also there are two different orbits confined to x < 0 and x > 0, respectively. This is shown in 

Figs. 3b and 3f. There is no cross-well motion. That is, cross-well motion is not a precursor for 

resonance. As the value of g is further increased from 
(1)

VRg = 42 the trajectories begin to visit the 

regions x < 0 and x > 0. However, the two co-existing orbits are not symmetric about origin. This is 

evident from Figs. 3c and 3g where g = 82. The value of Q for these two orbits is 1.56. The value of Q 

decreases with increase in g beyond 
(1)

VRg . 
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Fig3. Time series plot for four values of g for the system (1) with delay time being of the form of sigmoid 

function Eq. (2). Here 0  = 1, p = −1 and γ = 0.2. For the subplots (a)-(d) and (e)-(h) the initial condition is 

chosen in the neighbourhood of the left-well minimum and the right-well minimum, respectively. 

 

Fig4. (a) VRg versus 0  and maxQ  versus 0  for the system (1) with sigmoid function type of time delay. The 

values of the parameters in the time-delayed feedback term are fixed as γ = 0.4 and p = −1. 

At a value of g the response amplitude Q becomes minimum and then Q increases with increase in g. 

A second resonance occurs at g = 
(2)

VRg  = 108. The corresponding value of Q is 2.48. We note that Q 

at 
(1)

VRg  and
(2)

VRg  are not the same. Figures 3d and 3h show the orbits for g = 108. By looking at the 

trajectories or phase portrait for a range of values of g it is not possible to determine the values of g at 

which resonance takes place. 

For a range of fixed values of 0  the control parameter g is varied from zero and its critical values  

VRg  at which resonance occur and the corresponding value of Q are numerically computed. When 

there are two resonances one at g = 
(1)

VRg  and another at 
(2)

VRg  with 
(1) (2)

VR VRg g we choose the critical 

value as the one for which Q is larger. Figure 4a shows the variation of VRg with 0 for 0 ∈ [0, 5]. 

VRg oscillates with 0 . In Fig. 4b maxQ (the value of Q at g = VRg ) increases with 0 , reaches a 

maximum at a value of 0  and then decreases. That is, VRg  and the value of Q can be controlled by 

the parameter 0 .  

3. PARABOLIC STATE-DEPENDENT TIME-DELAY 

Next, we consider the system (1) with the time-delay being of the form 
2

0( ( )) (1 ).x t px     

where  (x(t)) is quadratic in x. In order to make   ≥ 0 we choose p > 0 and 0  > 0.  
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Figures 5a and 5b show the response amplitude profile, Q versus g, for a range of values of γ for 0  = 

0.6 and for p = 0.2 and 0.9. These two figures can be compared with Fig. 1 where the time-delay is a 

sigmoid function type. For a range of fixed values of γ and p two resonances occur when the 

parameter g is varied. Both
(1)

VRg  and
(2)

VRg  move towards origin. In Fig. 5a (p = 0.2) for γ< 0.5 there are 

two resonances, only one resonance for 0.5 < γ < 0.95 while for γ > 0.95 there is no resonance when g 

is varied. Further, for γ > 1, Q(g) ≈0. Similar results are found for other values of p. However, for 

example, in Fig. 5b corresponding to p = 0.9, we observe a number of resonance peaks for each fixed 

value of γ. The second resonance peak is the dominant resonance for a range of values of g. The 

amplitude of the resonance peaks decays with increase in g.  

Figures 5c and 5d depict the effect of 0  and p, respectively, on the resonance curve for fixed values 

of other parameters. Here again a sequence of resonance peaks occur when g is varied.  

 

Fig5. The results for the system (1) with parabolic type state-dependent delay. (a)-(b) γ versus g versus Q for p 

= 0.2 (a) and p = 0.9 (b) with 0  = 0.6. (c) 0 versus g versus Q for γ= 0.3 and p = 0.9. (d) p versus g 

versus Q for γ = 0.3 and 0 = 0.6. 

 

Fig6. Variation of (a) VRg  and (b) Qmax the value of Q at g = VRg with the parameter 0  for the system (1) 

with the delay time being given by Eq. (5). Here p = 0.9 and γ = 0.3. 

The number of resonance peaks increases with increase in the value of 0  and p. In Fig. 5 we find that 

the range of time-delay increases with increase in 0  and p. 

For a relatively small range of delay time (p and 0  are small) the response amplitude profile does not 

exhibit multiple peaks. Damped oscillation of Q occurs when the delay time interval is sufficiently 

large (p and 0  are large). The multi-resonance peaks are not realized when the time-delay is a 

sigmoid function. In Fig. 6 we plot the VRg (the value of g at which Q is the largest) and the 

corresponding value of Q, maxQ  as a function of 0 . The variation of these two quantities in the case 

of parabolic time-delay is similar to the case of sigmoid function time-delay. Though VRg oscillates 

with 0 , the value of maxQ  increases with increase in 0  from a small value, reaches a maximum at 

a value of 0  and then decreases. The value of maxQ  can be controlled by 0 .  



C. Jeevarathinam & S. Rajasekar

 

International Journal of Advanced Research in Physical Science (IJARPS)                                        Page | 6 

 

Fig7. Q versus γ versus g for the system (1) with the time-delay  (x(t)) =
2

0e
px 

, 0  = 1 and for four fixed 

values of p. 

4. GAUSSIAN DELAY-TIME 

In the previous two subsections we considered sigmoid function and parabolic type delay- time. In the 

sigmoid function case (refer Eq. (2)) depending upon the value of p the delay time ( ( )) 0x t   either 

for x ≫ 0 or for x ≪ 0. In this subsection we consider a form of   which decays to 0 as |x| increases 

from a small value. An example is the Gaussian form of   given by 
2

0( ( )) e .pxx t    

Figure 7 presents the effect of the parameters γ, p and g on the response amplitude for 0 = 1. For 

small values of p the system exhibits double resonance when g is varied for a range of fixed values of 

γ. For γ greater than a critical value only one resonance occurs. This is shown in Fig. 7a. Three 

resonances occur for a range of fixed values of p and γ. We can clearly notice three resonances in 

Figs. 7b and 7c. In Fig. 7d for p = 5, a large value of p, the middle resonance is weak. Here also the 

values of g at which resonances occur move towards origin as the value of γ increases. The rate of 

changes of the values of g at which second and third resonances occur is much slower than the first 

resonance. The values of Q at the resonances increase with increase in the value of γ. 

Figure 8 shows the variation of VRg (the value of g at which the value of Q is the largest) and the 

corresponding Q, maxQ , with the parameter 0  for γ = 0.3 and p = 0.1. VRg oscillates with 0 . The 

oscillation is much smoother than for the cases of sigmoid function and parabolic type time-delay 

(Figs. 4a and 6a). Here again maxQ  increases with increase in the value of  , reaches a maximum at 

a value of 0  and then decreases. 

 

Fig8.  (a) VRg versus 0  and (b) maxQ (g = VRg ) versus 0  for the system (1) with the Gaussian type position 

dependent time-delay. 
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5. CONCLUSIONS 

In this present paper we reported our study on the vibrational resonance in the double- well Duffing 

oscillator system with position-dependent time-delayed feedback. We considered three forms of the 

delay time: sigmoid function, parabolic function and Gaussian function of position variable. In the 

absence of time-delay, for the parametric choices used in our study two resonances with same 

response amplitude at resonance is found. Nontrivial effects are realized in the presence of the 

position-dependent time-delayed feedback. An interesting feature of 
2

0 (1 )px    is the 

occurrence of multiple vibrational resonance for a range of values of p and the feedback strength γ. 

For a range of values of the control parameters of the three forms of time-delay Q(g, ) > Q( = 0). In 

the three forms of the time-delay the maximum value of the response amplitude Q is found to increase 

with the value of 0 , reaches a maximum at a value of 0 and then decreases with further increase in 

the value of 0 . Q can be controlled by means of the parameters characterizing the form of 

distributive time-delay and the strength of the feedback term. 
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