New General Equations for Calculation of Elements of Dynamical Matrix and Elastic Constants of BCC and FCC Metals

L.Enkhtor, R.Galbadrakh

School of Science, National University of Mongolia Ikh Surguuliin gudamj-1, Ulaanbaatar, Mongolia

V.M.Silonov

Physics Faculty, Moscow State University Leninskie Gory-1, Moscow, Russia

Abstract: The generalized equations for calculation of elements of dynamical matrix and elastic constants of BCC and FCC metals are derived. These equations are expressed through radial and tangential force constants, which are derivations of the pair wise interatomic potential. The equations for elements of dynamical matrix are developed according to the de Launay method, and the equations for elastic constants are derived by using the Born-Begbie model. The suggested equations are alternative to widely used equations of G.L.Squires, which were expressed through the Born-von-Karman force constants. For verification of the equations, were calculated elastic constants of Li, K, Na, Rb, Cs, Al, Cu, Ag, and Pd within the frame of pseudopotential theory, which were found in satisfactory agreement with experimental data.

Keywords: *dynamical matrix, radial and tangential force constants, elastic constants, pseudopotential theory*

1. INTRODUCTION

In calculations of the crystal lattice dynamics and elastic constants is still popular equations of G.L.Squires [1], which are expressed through the Born-von-Karman force constants. At first, the equations of G.L.Squires are successfully used by W.M.Shyu and G.D.Gaspari [2] for calculations of elastic constants of simple FCC and BCC metals within pseudopotential theory, but it was revealed that the theoretical values of Born-von-Karman force constants significantly differ from experimental values calculated from the fitting of experimental phonon spectra. In our opinion, Born-von-Karman force constants are not so convenient to use in fitting procedures of phonon spectra, because it is necessary up to six types of force constants on depending on the atomic coordinates.

A first-principles calculation of elastic constants of FCC metals and alloys within de Launay model [3] via the radial and tangential force constants on 10 nearest neighbor atoms is done by S.C. Upadhyaya et.al.[4,5]. They calculated elastic constants C_{11} , C_{12} and C_{44} of Ni, Pd, and alloys Ni_{0.55}Pd_{0.45}, Fe_{0.92}Co_{0.08} with FCC crystal structure by applying the transition metal model potential of Animalu [6]. But formulas for calculation of the elastic constants C_{ij} and elements of dynamical matrix D_{ij} for FCC metals and alloys offered by S.C. Upadhyaya and his colleagues are not compact in comparison with expressions developed by G.L.Squires [1]. Portnoi K.I. et.al. [7] developed compact expressions for calculation of elastic constants C_{11} , C_{12} and C_{44} of BCC metals, but they managed to predict values only of C_{12} for K, Rb, and Cs. In our previous work [8,9] we calculated elastic constants C_{11} , C_{12} and C_{44} of BCC metals of [7] by applying the transition metal model potential of Animalu. The equations for calculation of elastic constants of BCC metals were recently offered and successfully applied for calculation of elastic constants of alkali metals [10] also by authors of this work.

L.Enkhtor et al.

In the present work, the general equations for calculation of elastic constants C_{11} , C_{12} , C_{44} and elements of dynamical matrix D_{ij} of BCC and FCC metals via the radial and tangential force constants for arbitrary number of shells are developed within the de Launay model. For the verification of the offering equations, the elastic constants C_{11} , C_{12} and C_{44} of Li, Na, K, Rb, Cs, Al, Cu, Ag, Ni, and Pd are calculated using pseudopotentials and results are discussed in comparison with the existing experimental values and calculations of the other authors.

2. THEORY

According to [2], in case of central interaction, the first and second derivatives of pair potential V(r) provide for *i*th set of neighbours the radial α_i and tangential β_i force constants:

$$\alpha_i = [d^2 V/dr^2]_{r_i};\tag{1}$$

$$\beta_i = \left[(1/r) \, dV/dr \right]_{r_i}.\tag{2}$$

These force constants response for components of secular equation:

$$|D(q) - 4\pi^2 M \nu^2 I| = 0, .$$
(3)

where D(q) is the dynamical matrix of order (3×3), *I* is the unit matrix, *v* is the normal mode phonon frequencies, and *M* is the ionic mass.

Within de Launay model [3] we wrote elements of dynamical matrix of secular equation (Eq. (3)) for FCC and BCC structures and generalized them to common expressions. Thus, the elements D_{ij} of symmetrical dynamical matrix D(q) are

$$\begin{split} D_{11} &= \frac{1}{6} \sum_{i} N_{i} \{ \beta_{i} [6 - C_{h1}C_{k2}C_{l3} - C_{h1}C_{l2}C_{k3} - C_{k1}C_{h2}C_{l3} - C_{k1}C_{l2}C_{h3} - C_{l1}C_{h2}C_{k3} \\ &- C_{l1}C_{k2}C_{h3}] + \\ &+ \frac{(\alpha_{i} - \beta_{i})}{h^{2} + k^{2} + l^{2}} [h^{2}(2 - C_{h1}C_{k2}C_{l3} - C_{h1}C_{l2}C_{k3}) + k^{2}(2 - C_{k1}C_{h2}C_{l3} - C_{k1}C_{l2}C_{h3}) + \\ &+ l^{2}(2 - C_{l1}C_{h2}C_{k3} - C_{l1}C_{k2}C_{h3})] \}; \end{split}$$
(4)
$$D_{12} &= \frac{1}{6} \sum_{i} N_{i} \frac{(\alpha_{i} - \beta_{i})}{h^{2} + k^{2} + l^{2}} \{hk(S_{h1}S_{k2}C_{l3} + S_{k1}S_{h2}C_{l3}) + hl(S_{h1}S_{l2}C_{k3} + S_{l1}S_{h2}C_{k3}) + \\ &+ kl(S_{k1}S_{l2}C_{h3} + S_{l1}S_{k2}C_{h3}) \}, \end{split}$$
(5)

where *i* is number of shell, N_i is number of atoms on *i*th shell, $C_{hj}=\cos(haq_j/2)$, $C_{kj}=\cos(kaq_j/2)$, $C_{lj}=\cos(kaq_j/2)$, $S_{hj}=\sin(haq_j/2)$, $S_{kj}=\sin(kaq_j/2)$, $S_{lj}=\sin(laq_j/2)$, j=1,2,3 ($q_1=q_x; q_2=q_y; q_3=q_z$), sets of (h,k,l) are coordinates of atoms in a/2 unit, *a* is lattice parameter. Within the Born-Begbie model, from the elements of dynamical matrix D_{ij} (Eqs.(4)-(5)) in the long-wavelength limit of $q \rightarrow 0$ we obtained next expressions for the elastic constants of BCC and FCC metals:

$$C_{11} = \frac{1}{12a} \sum_{i} N_i \left\{ \beta_i (h^2 + k^2 + l^2) + [\alpha_i - \beta_i] \frac{h^4 + k^4 + l^4}{h^2 + k^2 + l^2} \right\};$$
(6)

$$C_{44} = \frac{1}{12a} \sum_{i} N_i \left\{ \beta_i (h^2 + k^2 + l^2) [\alpha_i - \beta_i] \frac{h^2 k^2 + h^2 l^2 + k^2 l^2}{h^2 + k^2 + l^2} \right\};$$
(7)

$$C_{12} + C_{44} = \frac{1}{6a} \sum_{i} N_i [\alpha_i - \beta_i] \frac{h^2 k^2 + h^2 l^2 + k^2 l^2}{h^2 + k^2 + l^2}.$$
(8)

(for the FCC metal values for C_{11} , C_{12} , C_{44} must be multiply by 2).

Pseudopotential theory in second order describes the interatomic interaction potential in the central pairwise form [2] like as:

$$V(r) = \frac{Z^2 e^2}{r} - \frac{2Z^2 e^2}{\pi} \int_0^\infty G(q) \frac{\sin(qr)}{qr} dq,$$
(9)

where Z is valence, e is electronic charge, and G(q) is the normalized energy wave-number characteristic given by:

$$G(q) = \left[\frac{4\pi Z e^2}{\Omega_0 q^2}\right]^{-2} \frac{W^{bare}(q)^2}{1 - f(q)} (1 - 1/\varepsilon(q)).$$
(10)

International Journal of Advanced Research in Physical Science (IJARPS)

Page | 11

New General Equations for Calculation of Elements of Dynamical Matrix and Elastic Constants of BCC and FCC Metals

 $W^{bare}(q)$ is bare ion model potential and $\varepsilon(q)$ is dielectric function according Hubbard [11] and Sham [12] and defined by

$$\varepsilon(q) = 1 + [1 - f(q)] \frac{4\pi Z e^{*2}}{\Omega_0 q^2} \left(\frac{2}{3} E_F\right)^{-1} \left[\frac{1}{2} + \frac{4k_F^2 - q^2}{8k_F q} \ln \left|\frac{2k_F + q}{2k_{F-q}}\right|\right]$$

where $E_F = \frac{\dot{h}^2 k_F^2}{2m^*}$, k_F is the Fermi wave-number, m^* is effective mass of electron,

$$e^{*2} = (1 + \alpha_{eff})e^2, f(q) = \frac{q^2}{2(q^2 + k_F^2 + k_S^2)}, k_S^2 = \frac{2k_F}{\pi}.$$

The bare ion model potential form factor $W^{bare}(q)$ depends on certain form of the model potential.

3. NUMERICAL RESULTS AND DISCUSSIONS

For verification of Eq. (6)-(8) we calculated elastic constants of some BCC alkali metals and FCC metals with comparison with experimental data and calculated results of other authors.

The radial α_i and tangential β_i force constants of alkali metals Li, Na, K, Rb, and Cs are derived from the pair potential V(r), which were calculated by using an analytic form for bare-ion pseudopotential form factor proposed by N.W.Ashcroft [13].The Table I shows our calculated values of the tangential (β_i) and radial force constants (α_i) for Na in comparison of results of [2], in which same model potential was used in calculations. Note that these results are sufficiently close.

Ι	(hkl)	N_i	β_i		α_i		
			ours	[2]	ours	[2]	
1	111	8	-311.075	-310.61	4762.059	4764.66	
2	200	6	72.463	72.47	943.846	940.68	
3	220	12	7.411	7.41	-164.584	-163.24	
4	311	24	-0.018	-0.14	20.736	20.48	
5	222	8	1.006	0.82	21.849	22.39	
6	400	6	1.249	1.17	-13.699	-13.68	
7	331	24	-0.003	-0.11	-11.416	-11.23	
8	420	24	-0.266	-0.34	-7.215	-7.00	
9	422	24	-0.245	-0.30	5.057	5.25	
10	333	8	0.079	0.04	4.616	4.62	
	511	24	0.079	0.04	4.616	4.62	
11	440	12	-0.165	-	5.086	-	
12	531	48	0.156	-	-1.705	-	

Table I. Calculated values of the tangential (β_i) and radial force constants (α_i) for Na in units 10⁻³ N/m.

The Table II shows calculated elastic constants of Li, Na, K, Rb, and Cs. The elastic constants of Li are consistent with experimental values [14] and better than results of [15], which were calculated by using modified analytic embedded potential. Note that we calculated elastic constants of Li by using N.W.Ashcroft [13] potential with parameter of $R_c = 1.284$, which differs from parameter value chosen in [2], but our value is still in available range of parameter R_c [13]. Our results of calculation of elastic constants of Na, K, Rb, and Cs are satisfactory consistent with experimental data [16-19] and close to results [2], which calculated via Born-von-Karman force constants by using formulas of G.L.Squires [1]. In case of FCC metals we computed elastic constants of Al, Cu, Ag, Ni, and Pd (Table II). The elastic constants of Al calculated by using transition metal model potential of Animalu [6] are more close to experiment [20] than values of elastic constants calculated in [2] by using bare-ion pseudopotential of Ashcroft [13]. A success of computations of elastic constants depends on matching of model potential. Thus for Cu use of transition metal model potential of Animalu [6] is not reasonable, so it is hardly to achieve proper fitting of computational results to experimental data [21, 22] in this way. We attempted to applicate the pseudopotential suggested by J.A.Moriarty[23] and managed to achieve a better consistence of calculations with experiment, which is shown in Table II. The results of calculation of elastic constants of Cu by the method of homogeneous deformation, using one-parameter model potential [24], gives value of C₄₄ more close to the experiment than our calculated one.

L.Enkhtor et al.

However, transition metal model potential of Animalu [6] well suits for calculation of elastic constants of Ag, because our values of C_{11} , C_{12} are more close to experiment [21,22] than respective results of calculations carried out by using one-parameter model potential [24]. In cases of Ni and Pd, we improved a coincidence of calculations with experiment [25,26], although we used same model potential as in [4] and almost same set of force constants. Thus, Table III shows our calculated values of the tangential (β_i) and radial (α_i) force constants for Ni, which are more close to the experiment than corresponding results of [4].

Metal	Reference	C ₁₁	C ₁₂	C ₄₄	Metal	Reference	C ₁₁	C ₁₂	C ₄₄
	This paper	1.480	1.297	1.056		This paper	11.483	3.080	3.545
Li	[15]	1.362	1.151	0.901	Al	[2]	9.467	2.491	2.892
	Expt.(78K) [14]	1.486	1.274	1.048		Expt.(4.2K)[20]	11.43	6.19	3.16
	This paper	1.005	0.834	0.633		This paper	16.68	13.20	9.05
Na	[2]	1.008	0.842	0.637	Cu	[24]	16.105	11.821	7.700
	Expt.(78K) [16]	0.993	0.823	0.56		Expt.[21,22]	16.84	12.14	7.54
К	This paper	0.414	0.350	0.262		This paper	12.199	9.743	3.854
	[2]	2] 0.413 0.345 0.26		0.268	3 Ag	[24]	11.824	10.210	4.989
	Expt.(4.2K)[17]	0.416	0.341	0.286		Expt.[21,22]	12.40	9.37	4.61
	This paper	0.296	0.259	0.194	Ni	This paper	23.52	15.08	8.54
Rb	[2]	0.283	0.235	0.190		[4]	22.78	17.84	8.70
	Expt. (80K)[18]	0.296	0.250	0.171		Expt.[25]	24.60	15.00	12.20
Cs	This paper	0.218	0.183	0.142		This paper	23.48	17.65	6.93
	[2]	0.221	0.185	0.143	Pd	[4]	24.37	17.57	8.55
	Expt.(78K)[19]	0.247	0.209	0.148		Expt.[26]	22.70	17.59	7.17

Table II. The elastic constants of pure metals in units 10^{10} N/m².

Table III.	Calculated	values of the	tangential (B_i) and i	radial force	constants (α_i) for	Ni in	units10 ⁻³ N/m.
	00000000000	1011100 01 1110	ren gennen (p_0 contents		001000000000			

<u>i</u>	(hkl)	N_i	β_i		α_i		
			ours	[4]	ours	[4]	
1	110	12	-3441.55	-3503.39	41745.28	42076.75	
2	200	6	-28.093	-28.15	303.213	292.92	
3	211	24	94.919	95.25	31.002	60.23	
4	220	12	9.909	10.82	-655.785	-652.32	
5	310	24	-13.958	-14.28	185.985	182.69	
6	222	8	8.612	8.27	151.771	160.37	
7	321	48	5.741	6.00	-170.332	-167.57	
8	400	6	-4.799	-4.64	-100.715	-91.96	
9	330	12	-3.58	-3.75	105.671	97.87	
	411	24	-3.58	-3.75	105.671	97.87	
10	420	24	2.147	2.03	84.126	83.72	
11	332	24	2.972	-	-40.107	-	

4. CONCLUSION

As shows existing experimental data and theoretical approuches, our expressions for calculation of elastic constants of Ni and Pd are more suitable than expressions developed in [4]. For Al, Cu, Ag, Ni, and Pd our expressions gives value of C_{11} in good agreement with experimental result, while one of the calculated values of C_{12} or C_{44} has considerable discrepancy with experimental data, and results of calculation depend on matching of model potential. In case of BCC alkali metals, our expressions are useful for evaluation of elastic constants.

ACKNOWLEDGEMENT

This work has been done within the framework of the advanced research project of National University of Mongolia on title "Investigation of crystal lattice dynamics, magnetic and optical properties, and ordering phenomena".

REFERENCES

- [1] G.L.Squires, Arkiv Fysik 25, 21(1963).
- [2] W.M.Shyu, G.D.Gaspari, Phys.Rev. 170, 687(1968).

International Journal of Advanced Research in Physical Science (IJARPS)

- [3] De Launay. Solid State Physics. 2, 219(1956).
- [4] S.C.Upadhyaya, J.C Upadhyaya, R.Shyam, Phys.Rev. 44,122 (1991).
- [5] R.Shyam, S.C.Upadhyaya, J.C.Upadhyaya, Phys.Status Solidi B 161,565(1990).
- [6] A.O.E.Animalu, Phys.Rev.B8, 3542 (1973); Phys.Rev. B8,3555 (1973).
- [7] K.I.Portnoi, V.I.Bogdanov, D.L.Fuks, The calculation of interactions and the phase stability (Metallurgy, Moscow, 1981), p.248.
- [8] V.M.Silonov, L.Enkhtor, Izvestya vuzov 3, 71(1998).
- [9] V.M.Silonov, L.Enkhtor, Moscow University Phys. Bull. 3, 37(1997).
- [10] L.Ekhtor, V.M.Silonov, Bulletin of the Russian Academy of Sciences. Physics.78, 1163(2014).
- [11] J.Habbard, Proc. Roy. Soc.A 240, 539(1957); Proc. Roy. Soc. A 243,336(1958).
- [12] L.J.Sham, Proc. Roy. Soc. A 283, 33(1965).
- [13] N.W.Ashcroft, Phys. Letters 23, 48(1966); N.W.Ashcroft, and D.C.Langreth, Phys. Rev. 155, 682(1967).
- [14] H.C.Nash, C.S.Smith, J. Phys. Chem. Solids 9, 113(1959).
- [15] You Xie, Jiang-Min Zhang, Can.J.Phys. 86, 801(2008).
- [16] H.B.Huntington, Solid State Physics 7, 213(1958).
- [17] W.R.Marquart and J.Trivisonno, J. Phys. Chem. Solids 26, 273(1965).
- [18] E.J.Gutman, J.Trivisonno, J. Phys. Chem. Solids 28,805(1967).
- [19] F.J.Kollarits, J.Trivisonno, J. Phys. Chem. Solids 29, 2133(1968).
- [20] Kamm G.N., Alers G.A. J. Appl. Phys. 35, 327(1964).
- [21] B.Bacon, S.C. Smith, Acta metall. 4,337(1956).
- [22] E.Goens, J. Z.Weerts, Phys. 37,321(1936).
- [23] J.A. Moriarty Phys. Rev.B8,1639(1972).
- [24] F.A.Khwaja, M.S.K.Razmi, Phys. Status Solidi B 138, K95(1986).
- [25] J.A.Rayne, Phys. Rev. 118,1545(1960).
- [26] A.K.Ghatak, L.S.Kothari, Introduction to Lattice Dynamics (Addison Wesley, London, 1972), p.234.