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Abstract: A proposal is given for a possible understanding of the unusual spin correlation that is found 

between two separated spin one-half particles, which originally formed a two-particle spin zero singlet 

quantum mechanical pair state.  As the Bell inequality has shown that it is not possible to understand such 

spin correlations using a precise hidden variable theory, it was necessary to consider an underlying 

statistical theory dictated by quantum mechanics.  However, in contrast to the need for invoking a nonlocal 

interpretation of quantum mechanics, the well-known spin correlation results can be obtained and 

understood using a local statistical theory. The underlying quantum spin reality emerging upon 

measurement can be understood in a similar fashion as one understands the infinitely complex character of 
nonlinear dissipative systems, which exhibit aspects of unpredictability associated with deterministic chaos. 

Keywords: Quantum Entanglement, Quantum Foundations, Spin Correlation, Bell Inequality, 

Deterministic Chaos. 

 

1. INTRODUCTION 

The unusual spin correlation between two separated spin one-half particles, which originally 

formed a two-particle spin zero singlet quantum mechanical pair state, is well known. The perfect 

anti-correlation, which occurs when there is zero degrees of separation angle between the spin 

measurements of each particle gives support for the desire to construct a successful and precise 
hidden variable theory for the spin of each particle.  However, given the necessary condition that 

the spin of each particle must be random and independent, in combination with the well-known 

statistical correlation between the two particle spin measurements which is simply a function of 
the separation angle, makes the search for a successful spin model quite problematic. Ultimately, 

with the advent of the Bell inequality analysis [1],it was definitively shown that precise hidden 

variable theories for the spin construct of each particle cannot be found. This agreed with 
quantum mechanical theory and experiments [2-5]. The promulgated conclusion of the original 

Bell inequality analysis, as well as numerous subsequent analyses, was that a successful theory 

(which would produce exactly the quantum mechanical prediction) must have a grossly nonlocal 

structure. This has always been a very disturbing concept. 

In the following, we provide a mechanism of understanding the unusual spin correlation of singlet 

state pair particles in a local framework. Curiously, the recent knowledge gained during the last 

several decades on the study of the seemingly unrelated topic of classical nonlinear dissipative 
systems exhibiting somewhat unpredictable features, makes this view of randomness as a 

representation of chaotic dynamics noteworthy. These ideas have also found application in a wide 

variety of fields, including ecological and social dynamics [6-9], electronic dynamics [10,11],as 

well as in general physical systems [12]. With this knowledge base in mind, we consider a model 
of the spin system, which exhibits deterministic chaos such that the results of any measurement of 

the system are highly sensitive to the initial conditions of the system in combination with the 

measuring apparatus. As a result of this chaotic behavior, we take the point of view that the result 
of any specific measurement is typically described as an emergent reality which occurs upon 

measurement of the system, but which cannot be predicted prior to the measurement. It should be 

noted that this concept is well known in the context of measuring the quantum spin of an 
individual particle or, more importantly, the correlation between the spin measurements of two 
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separated particles which originally formed a spin zero singlet pair state. Consequently, we ask 

the reader to consider the spin measurement process as an emergent reality, which cannot be 
predicted in advance and thus no hidden variable theory of individual spins will be proposed. In 

the terminology of infinitely complex systems exhibiting deterministic chaos, sufficient 

knowledge of initial conditions will not be assumed in the model. 

We limit our analysis to a statistical model of the spin correlation associated with the two 

separated spin one-half particles which originally formed a spin zero singlet pair state.  

Specifically, we will offer a model of the statistical expectation value of the spin product of the 
two separated particles, which is simply a function of the measurement angle of separation. This 

model will be required to be consistent with the quantum mechanical prediction, as well as with 

spin experiments.  In section 2, we present a brief review of the quantum mechanical analysis of 

this spin problem. In section 3, we present a brief review of the hidden variable analysis of this 
spin problem, originally used to derive the Bell inequality, which was clearly shown to be 

inconsistent with quantum mechanics. In section 4, our spin correlation model of this spin 

problem will be presented and shown to agree with quantum mechanics. In section 5, a discussion 
of the results will be offered which clearly shows that the restriction of the Bell inequality does 

not apply and, furthermore, that the model provides a clear understanding of the results without 

the need for invoking a nonlocal structure. Finally, in section 6, conclusions will be offered which 
propose the need for development of more sophisticated and complex quantum mechanical spin 

models which are consistent with the results given here, but which will ultimately lead to deeper 

insight into quantum spin systems. 

2. BRIEF REVIEW OF THE QUANTUM MECHANICAL ANALYSIS OF THIS SPIN PROBLEM 

We use similar notation as in the original paper of Bell [1].The Bell inequality was derived in the 

context of Bohm’s[13,14] simplified spin model used to elucidate the EPR[15] paradox.  Here, we 

consider an initial singlet pair quantum state   of two spin ½ particles, which can be described 

using standard quantum mechanical spin state notation.  Using a spin up (  ) and spin down (  ) 

basis, 
1

ˆa , along the unit vector â direction, for the first (labeled as 1) particle, and a similar 

basis for the second (labeled as 2) particle, the singlet state is 

 
1 2 1 2

ˆ ˆ ˆ ˆ / 2      a a a a .               (1) 

The two particles which form the original two-particle singlet pair state are assumed to be 
separated to a sufficient distance away from each other (without disturbing the spin structure of 

each particle), where simultaneous spin measurements are then made on the separated particles 

(beyond the light cone). Specifically, the first particle is measured in the â direction, while the 

second particle is measured in the b̂ direction where  ˆˆ cos  a b . With the use of standard 

quantum mechanical theory, the expectation value for the product of the two spin measurements 

can easily be derived, as follows. Denoting the normalized (to 1 ) spin measurement of the first 

particle as A , and the normalized spin measurement of the second particle as B , with the use of 

appropriate spin operators for the first particle 1 , and for the second particle as 2 , the quantum 

mechanical result for the spin product expectation value,  QMP  , is  

      1 2
ˆ ˆˆ ˆ cosQMP AB         a b a b    .            (2) 

It is well known that this quantum mechanics result, which has been used in the Bell inequality 
analyses, is in agreement with all the spin (and polarization) experiments [2-5]. 

3. BRIEF REVIEW OF THE HIDDEN VARIABLE ANALYSIS OF THIS SPIN PROBLEM 

As was done in section 2, we continue with the notation used in the original Bell inequality 
publication [1], in order to review that hidden variable spin proposal as well as the conclusions of 

that analysis. Specifically, associated with the singlet state pair of spin ½ particles, it was 

proposed that one should consider a precise hidden variable construct for the normalized spin of 

the first particle in the â direction, and the spin of the second (separated) particle in the b̂

direction, given a hidden variable parameter value of  .  Here, it should be noted that the hidden 
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variable spin of the first and second particles were precisely given by  ˆ,A a and  ˆ ,B b , 

respectively.  To be consistent with the quantum mechanics, these functions can only take on plus 

or minus one values, i.e. 

   ˆˆ, 1, , 1A B    a b .                (3) 

In order to compare the quantum mechanically derived expectation value of the product of the 
spin measurements of the two particles with a hidden variable prediction, a general non-negative 

probability density,    , with   0   , for occurrence of the hidden variable,  , was 

proposed, where 

  1d   .                  (4) 

Consequently, the hidden variable proposal for the spin product expectation value was given by 

       ˆ ˆˆ ˆ, , ,P d A B    a b a b .               (5) 

Ultimately, in the original publication it was shown that this hidden variable proposal for the spin 
product expectation value, equation (5), could not be used to reproduce the quantum mechanical 

result in equation (2), since 

   ˆ ˆˆ ˆ, QMP P    a b a b .                (6) 

Furthermore, for three general unit vector measurement directions, ˆˆ ˆ, ,a b c , a Bell inequality was 

derived using the hidden variable proposal for the spin product expectation value, equation (5), 

which is 

     ˆ ˆˆ ˆ ˆ ˆ1 , , ,P P P  b c a b a c .                (7) 

However, numerous experiments showed that the Bell inequalities such as that in equation (7) 

were violated [2-5]. Specifically, a violation is found by attempting to replace the hidden variable 

proposal of the spin product expectation value, equation (5), with the quantum mechanical result, 
equation (2), in the Bell inequality, equation (7), namely 

     ˆˆ, cosQMP P    a b .                (8) 

For example, if the three unit vector measurement directions, ˆˆ ˆ, ,a b c , are in a plane and are each 

successively separated by sixty degrees, where 

           0 0 0ˆ ˆˆ ˆ ˆ ˆ, cos 60 0.5, , cos 120 0.5, , cos 60 0.5P P P       a b a c b c ,         (9) 

then the Bell inequality, equation (7), fails since the inequality is not correct, as shown here 

     ˆ ˆˆ ˆ ˆ ˆ1 , , , 0.5 1.0P P P    b c a b a c .            (10) 

Prior to proceeding to section 4 which describes our spin correlation model, that will be shown to 
agree with quantum mechanics, it is important to note that it is well known that the Bell 

inequality, equation (7), was correctly derived from the hidden variable proposal for the spin 

product expectation value in equation (5).  Furthermore, it is important to note that the conclusion 

of the original Bell inequality publication[1] was that, in order for such a hidden variable spin 
construct, equation (5), to agree with quantum mechanics, equation (2), there must be a 

mechanism whereby the setting of one spin measuring device can influence the reading on the 

other device, such that the signal involved must propagate instantaneously (which is a nonlocal 
construct proposition).  However, it should be emphasized that this conclusion does not indicate 

that quantum mechanical spin must be inherently nonlocal. It simply states that the proposed 

hidden variable model in equation (5) cannot agree with quantum mechanics unless the model 
includes a nonlocal construct.  Nevertheless, since the advent of the Bell inequality there have 
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been numerous searches for evidence of nonlocal spin interactions between separated particles 

[16-19]. In addition, and counter to the conclusion of the need for nonlocal spin constructs, it has 
also been published that the derivation of the Bell inequality does not include the possibility that 

the probability density for the hidden variable parameter could be a function of time (that is, 

different at each measurement location) [20], with the conclusion that the Bell inequality would 
not be applicable for more sophisticated hidden variable spin theories.  Finally, in a recent special 

issue of the Journal of Physics A:  Mathematical and Theoretical, which is devoted to 50 years of 

Bell’s theorem, there is a published manuscript [21] which emphasizes that the Bell inequality is 
not just based on a locality assumption, but most importantly, the spin model assumes the 

existence of hidden variables, thus, the failure of the Bell inequality is not necessarily equivalent 

to the existence of nonlocal spin interactions.  In any case, in the following, we take the position 

that a valid local hidden variable model of spin agreeing with the proposed spin product 
expectation value cannot be constructed.  Consequently, in the following, we instead propose a 

way to understand the unusual spin correlation between singlet state pair particles through 

development of a local spin correlation model, which agrees with the quantum mechanical 
predictions. 

4. SPIN CORRELATION MODEL OF THIS SPIN PROBLEM 

With the conclusion that it is not possible to construct a precise local hidden variable theory of 
spin for each particle that agrees with quantum mechanics when it is used in the spin product 

expectation value, we turn our attention in this section to an understanding of the statistical 

aspects of the spin correlation. To this end, we continue with the notion proposed in the 
introduction, section 1, on the possibility that there could be an underlying infinitely complex 

aspect of spin which emerges upon measurement. With this assumption in place, we do not 

propose a specific hidden variable construct for the spin of each particle which originally formed 

a spin zero singlet pair state, since the actual spin value along a general measurement direction 
cannot be predicted prior to measurement (which is identical to the prescription imposed by 

quantum mechanics).  However, this does not restrict a proposal for a local statistical model of the 

spin correlation between the two separated particles. 

In order to efficiently proceed, we employ knowledge of the well-known spin product expectation 

value dictated by quantum mechanics, being    cosQMP    as shown in equation (2).  

Specifically, although we do not know the spin of either particle until measurements occur, for the 

situation that the separation angle between measurements is small, 0  , we do know prior to 

measurement that the spin measurements will be highly anti-correlated, namely 1QMP  .  For 

example, if the spin result of the first particle is 1 , then the spin result of the second particle will 

tend towards 1 on average and vice versa.  Conversely, for a large separation angle,   , then 

the spin measurements will be highly correlated, viz. 1QMP  .  Finally, for a separation angle 

approaching an orthogonal measurement direction condition, / 2  , then the two spin 

measurements will tend towards being completely uncorrelated, that is 0QMP  .  Consequently, 

although we will not invoke a nonlocal spin construct, as the spin measurement direction of one 

particle is not allowed to influence the spin measurement of the other particle, we can still use this 

spin correlation concept in the construction of our spin model such that the angle between 

measurements is brought forward as a critical component of the model.  Here, it is important to 
keep in mind that the result of any spin measurement of either particle cannot be precisely known 

in advance, due to the proposed infinitely complex nature of the spin measurement process.  

However, as the two separated singlet state pair particles are essentially mirror images of each 
other (from a spin state perspective), it is reasonable that there is a high degree of anti-correlation 

or correlation as the angle between measurements approaches 0 or , respectively. It should be 

noted that this is a statistical concept valid on average over numerous experiments. It can never be 

used to predict a precise result for any one set of measurements of the two separated particles. 

With the above statistical concepts of the spin correlation structure for singlet state particles in 
mind, we propose an alternate type of hidden variable theory for the spin correlation model. At 

the outset of our model description, it is important to emphasize that this is not meant to be a 

precise hidden variable theory of spin, as was proposed in the original Bell inequality publication 
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[1], since a local theory of this type cannot be successfully constructed. Thus, in contrast to the 

usual hidden variable theory that attempts to specify a precise spin structure for each separated 
particle, this model will simply represent the statistical concepts associated with the spin product 

of the two separated particles. In the following, we use a similar notation as was done for the 

review of the standard hidden variable theory, given in section 3, with the concept of a hidden 
variable parameter introduced to represent a specific realization for the spin.  It is important to 

again emphasize that the hidden variable realization parameter is not used here to represent a 

specific spin for each particle.  Instead, it is simply used to represent the spin product of the two 
particles, which as usual can only take on 1 normalized values.  The statistical aspect of the spin 

model will then be entirely embedded in the probability density function, which is associated with 

a specific hidden variable parameter value as well as with the angle of separation between 

measurements. As noted above, it is necessary for the probability density function to incorporate 
the fact that there should be a significant anti-correlation (where the normalized spin product is 1
) for small angles of separation, and a significant correlation (where the normalized spin product 

is 1 ) for large angles of separation. As the following spin correlation model for singlet state pair 
particles incorporates the notion that there could be an underlying infinitely complex aspect of 

spin, which emerges upon measurement, we coin the phrase Infinite Complexity Hidden Variable 

(ICHV) theory associated with our reduced spin correlation model.  This will be used to obtain 
the spin product expectation value in agreement with quantum mechanics. 

Let the combined normalized spin product of the two separated particles be given by  ICHVAB  , 

where  is a continuous hidden variable parameter value over the infinite domain, 

  ,                (11) 

and 

  1ICHVAB    .               (12) 

Note that while this is the spin product function,  ICHVAB  is not the product of the individual 

spins. In addition to this spin product function, we propose an associated non-negative normalized 

probability density,  , 0ICHV    , for all separation angles of measurement, 0    , where 

the hidden variable parameter is again  and the probability density is properly normalized as 

 , 1ICHVd  




 .               (13) 

Given this approach for the spin product, in combination with an appropriate probability density 

model, the proposed ICHV spin product expectation value,  ICHVP  , is 

     ,ICHV ICHV ICHVP d AB    




  .             (14) 

Here, it should be noted that this expectation value construct appears similar to the original hidden 

variable theory approach, of equation (5); however, the significant difference here is that the 

probability density,  ,ICHV   , in equation (14), must be a function of the separation angle,  , 

as well as the hidden variable,  , and the spin product,  ICHVAB  , is only a function of the 

hidden variable,  , as it will take on only plus or minus one values, depending on the hidden 

variable realization parameter.  Finally, as a point of reference with respect to the notion of an 

underlying infinitely complex emergent spin structure, one can think of the hidden variable 
parameter representing the infinite variety of initial conditions. Unlike the standard hidden 

variable theories, which utilize precise spin predictions, this hidden variable parameter cannot be 

used for precise spin predictions, as it is connected statistically through the probability density. 

Our specific ICHV choices for the spin product and associated probability density functions will 
lead to a spin product expectation value that is consistent with quantum mechanics. Let the spin 
product function be 
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 
1, 0

1, 0
ICHVAB






   
 

   
,              (15) 

where the probability density is 

 
 

 

2

2

2

2

2
exp , 0

sin / 2

,

2
exp , 0

cos / 2

ICHV





  






           
      

 
    
       
     

.          (16) 

Here, it should be noted that our choice of the probability density, equation (16), for analytic 
simplicity, incorporates a Gaussian function structure, which can easily be integrated over the 

hidden variable.  Clearly, other functional forms for the probability density function could be used 

if desired.  Finally, in order to show that these choices for the spin product in combination with 

the probability density function will be consistent with the quantum mechanical predictions, it is 
necessary to check the probability density normalization as well as the spin product expectation 

value result.  First, we show that this probability density is properly normalized.  

 
   

   

2 2
0

2 2

0

2 2

2 2
, exp exp

sin / 2 cos / 2

sin / 2 cos / 2 1

ICHVd d d
 

    
  

 

 

 

         
          

            

  

  
.       (17) 

Second, we show that the spin product expectation value, using the ICHV model, equation (14), 

agrees with quantum mechanics, as given in equation (2). 

             

         

0

0

2 2 2

, 1 , 1 ,

sin / 2 cos / 2 1 2cos / 2 cos

ICHV ICHV ICHV ICHV ICHV

QM

P d AB d d

P

          

    

 

 

    

      

  
.       (18) 

Ultimately, to gain further insight into the ICHV spin correlation model, it is useful to show that 

the spin product function, equation (15), in combination with the probability density function, 

equation (16), achieve the desired spin correlation results depending on the separation angle 

between measurements, as described above.  Here, we show that a precise anti-correlation occurs 

where the spin product is negative one, 1AB , in the limiting case of a zero angle of 

separation, 0  ; a precise correlation occurs where the spin product is plus one, 1AB , in the 

case of one-hundred and eighty degrees of separation,  ; and that there is no correlation for 

the spin product, which is zero upon average as 0AB  , in the case of ninety degrees of 

separation, / 2  .  In fact, all of these boundary conditions for the spin product are satisfied, as 

noted by taking the appropriate separation angle limits, given as 

  1, 0ICHVAB       with  
 0 2

0, 0

lim , 2
exp , 0

ICHV



  
 





  


 
   



;       (19) 

  1, 0ICHVAB      with  
 22

exp , 0
lim ,

0, 0

ICHV 

 
   





   

 
   

;         (20) 

and 
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 
1, 0

1, 0
ICHVAB






   
 

   
with  

 

 

2

/2

2

2
exp 2 , 0

lim ,
2

exp 2 , 0

ICHV 

 


  

 





   


 
    


.    (21) 

5. RESULTS AND DISCUSSION 

It is important to review the lessons learned and understanding gained from the development of 

this spin correlation model for singlet state pair particles.  First, recall that after the advent of the 
original Bell inequality analysis, where it was shown that a precise local hidden variable model of 

spin, equation (3), cannot be used to reproduce the unusual spin product expectation value 

quantum mechanical result, equation (2), much of the physics community was led to the 
assumption that a nonlocal (“spooky action at a distance”) spin structure must be responsible for 

the quantum mechanical results.  However, now it should be clear that such a nonlocal structure is 

not necessary to achieve the quantum mechanical spin results. Instead, this can be achieved by 

using a strategically chosen statistical model of the spin structure, which incorporates a 
probability density, equation (16), which is a function of the separation angle between 

measurements, .  It should be emphasized that this spin model is fundamentally local, as it is 

built into the spin structure at the outset prior to measurement of either particle. Ultimately, in 

combination with the 1 normalized spin product values, equation (15), and the associated 

probability density, equation (16), the ICHV local spin model leads to the spin product 
expectation value, equation (14), which reproduces precisely the quantum mechanical result

   cosICHVP    . 

Second, it is important to note that, although the spin correlation model given here is equivalent to 

standard quantum theory after integration over the hidden variable, the ICHV model is offered as 
an approach to understand a possible explanation for the unusual quantum mechanical results.   

Specifically, the hidden variable,  , is utilized in order to incorporate the needed statistics for the 

spin model so that it matches the quantum mechanical spin product expectation value result 

without employing exotic concepts, such as the need for a nonlocal spin mechanism.  

Furthermore, recall that the spin measurement concept employed here is that the spin system in 

combination with the measuring device is sufficiently complex such that the spin states cannot be 
predicted precisely in advance.  It emerges in the process of measurement (for example, as found 

in systems which exhibit deterministic chaos), while statistical spin results can be consistently 

predicted for the pair of singlet state particles as a function of the separation angle of 

measurement, .  Here, it should be noted that it is the hidden variable parameter in the ICHV 

spin correlation model that mathematically incorporates the unpredictability for a specific spin 
measurement realization result, representing the infinite variety of initial conditions.  

Consequently, with the ICHV spin model in mind, one may gain further understanding of the 

unusual quantum mechanical spin result; however, if the hidden variable is integrated over all the 
possible realizations, the usual and somewhat mystical quantum mechanical probability theory 

result appears.  This can be demonstrated by noting that the quantum mechanical probability for 

the spin product to be one (that is 1AB ) is  2sin / 2 , which is found by integrating the ICHV 

probability density, equation (16), over the positive hidden variable parameter domain, 

0    , where 

     2

0

Pr 1 , sin / 2ICHVAB d   


    ,            (22) 

and the quantum mechanical probability for the spin product to be minus one (that is 1AB ) is

 2cos / 2 , which is found by integrating the ICHV probability density, equation (16), over the 

negative hidden variable parameter domain, 0  , where 

     
0

2Pr 1 , cos / 2ICHVAB d   


    .            (23) 
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Therefore, the spin product expectation value from the quantum mechanical perspective, equation 

(2), is identical to the integrated version of the ICHV spin model, equation (18), as it should be, 
which is shown by using these quantum mechanical probability results, equations (22) and (23). 

         

           2 2

1 Pr 1 1 Pr 1

1 sin / 2 1 cos / 2 cos

QM

ICHV

P AB AB AB AB

P



   

         

      
.         (24) 

Nevertheless, it should be clear that the detailed unpredictability and the associated statistical 

interpretation of this spin correlation model is lost when integration is performed over the hidden 
variable. 

Finally, it is important to note that the Bell inequality restriction, which was applicable to the 

original and precise hidden variable spin construct, is not applicable to this statistical spin model.  

To see this, recall that the Bell inequality analysis associated with three distinct vector 

measurement directions, ˆˆ ˆ, ,a b c , and shown in equation (7), was based on the precise hidden 

variable construct for the spin of each particle, equation (3), in combination with the spin product 

expectation value calculation.  However, one should also recall that the spin correlation model 

presented here, which correctly predicts the quantum mechanical result for the spin product 
expectation value, is obtained through the integral construct found in equation (14). The spin 

product expectation value explored here has no detailed functional dependence on any distinct 

vector measurement directions, so that Bell inequality type of analyses cannot be constructed for 
this spin correlation model. 

6. CONCLUSION 

This model allows one to gain further insight into the complexity of the quantum spin process 
through an alternate use of a hidden variable parameter.  By using a purely local framework and a 

statistical spin model, this model produces all the critical features of quantum mechanics and spin 

experiments.  Given the success in obtaining the quantum spin product expectation value, we 
propose that quantum unpredictability of individual measurements can be associated with an 

underlying complexity (modeled using a hidden variable) that can be thought of as representing 

an infinite variety of initial conditions.  Thus, we suggest that exploration of more sophisticated 
quantum spin models which exhibit these complex characteristics is warranted. Specifically, we 

would like to encourage those with expertise associated with the study of classical nonlinear 

dissipative systems (exhibiting deterministic chaos due to extreme sensitivity on initial 

conditions) to explore the construction of more sophisticated quantum spin models.  It is assumed 
that these complex spin models will not only achieve the needed unpredictability, but that they 

will also predict the well-known statistical quantum spin results. Ultimately, using such 

exploratory approaches for the construction of complex spin models, there is a possibility of 
achieving a deeper insight into the quantum spin process, which may exhibit a more deterministic 

dynamics than traditional quantum mechanics, but which will still exhibit the usual 

unpredictability found in traditional quantum mechanics. 
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