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In terms of the standard interacting boson model ( sd-IBM)with one and two body interactions , the nuclear 

shape phase transition from spherical vibrator U(S) to axially deformed rotator SU(3) is studied in intrinsic 

coherent state . The results are applied to the even even Er-Yb-Hf Isotopic chain. A fitting procedure is 

performed to get the parameters of the model for each nucleus of the isotopic chain in order to obtain a 

minimum root mean square (rms) deviation between the calculated and the experimental selected energy 

levels, E2 transition rates and two- neutron separation energies. The potential energy surfaces (PES ’S ) 

and the critical points are analyzed in a search for shape phase transitions . The behavior of energy and 

B(E2) ratios in the ground state band are examined.  
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1. INTRODUCTION   

The original version of interacting boson model (sd- IBM-1) provides an elegant and powerful 

tool for description of collective nuclei [1].In this model , collective excitations in even- even 

nuclei are described in terms of a system of fixed number  N of bosons of two types : monopole 

(s) and quadrupole (d) bosons with angular momenta L = 0
+ 

and 2
+
 respectively. The six boson 

creation operators [ s
†

, 
†

( = 0,  1,  2 )]  and six boson annihilation  operators [ s,   ( = 

0,  1,  2 ) ]  , satisfy standard boson commutator relations. The structure of the model is 

determined by the U (6) group algebra generated by 36 bilinear - combinations of these boson 

operators. The IBM Hamiltonian can be expressed as a superposition’s of the first and second 

order Casimir operators of the groups entering the reduction chains of the U (6) group. The group 

structure leads to only three limiting dynamical symmetries U (5), SU (3) and O (6), which 

correspond to the three limiting cases, vibrational, rotational and  - unstable nuclei respectively.  

Recently the study of shape phase transitions is one of the most exciting topics nuclear structure 

.The interacting boson model (IBM) [1] and the geometric collective model (GCM) [2-4] 

represent two major models that successfully describe nuclear shape transitions [5-12].Shape 

phase transitions from one nuclear shape to another were first discussed [13] applying catastrophe 

theory [14] obtained in the classical limits of the IBM. A first order phase transition has been 

found in the transition U(5)- SU(3) , while a second order phase transition in U(5)-O(6). In 

particular the critical symmetry E(5) [15] has been suggested to describe critical points in the 

phase transition from spherical U(5) to   unstable O(6) shapes, while  X(5)  [16] is designed to 

describe critical points in the phase transition from spherical U(5) to axially deformed SU(3) 

shapes. In addition, the Y(5) symmetry [17] has suggested the importance of considering phase 

transition from axially deformed to triaxial  nuclei . Since the IBM was formulated from the 

beginning in terms of creation and annihilation boson operators, its geometric interpretation in 

terms of the shape variable is usually done by introducing the intrinsic coherent state [18, 19] with 

two shape deformation parameters  and . 
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The purpose of this paper is to investigate shape phase transitions within  the IBM-1 using 

intrinsic coherent state for Er-Yb-Hf isotopic chains , in which the occurrence of shape transitions 

from U(5) to SU(3) has been predicted, and show the dependence of the potential energy surfaces 

PES 
’
S  on the total number of bosons. The paper is organized as follows. In section 2, we 

constructed the IBM Hamiltonian in terms of multipole operators and using the intrinsic coherent 

state. In section 3 we generated the PES 
’
S. The location of the critical points in the shape 

transition is identified in section 4. In section 5, a systematic study of Er-Yb-Hf isotropic chains 

related to the U(5)- SU(3) shape transition is given .The main conclusion arising from the present 

results are discussed in section 6. 

2. THEORETICAL PROCEDURE 

The Hamiltonian adopted in the following includes a vibrational term and rotational term include 

quadrupole quadrupole interaction i.e breaking the SU(3) Hamiltonian by inclusion of the 

vibrational term which characterize the U(5) dynamical symmetry 

 

Where (dot) denotes scalar product,  is the boson number operator,  is the angular momentum 

operator and   is the boson quadrupole operator defined as: 

†  

†  

† † †    
 

Here      , and  is a structure parameter. 

Equation (1) defines an IBM-1 Hamiltonian in terms of four model parameters ,  a1 , a2  and  . 

The connection between the IBM, PES
,
s, geometric shapes and shape phase transitions can be 

investigated by introducing the intrinsic coherent state defined by [20] 

†
 

based on the boson creation operator of the form 

† † † † †
 

N is the total number of bosons which is equal to the number of nucleon pairs in the valence 

space, (, ) are the basic deformation parameters which determine the geometry of the nuclear 

surface. Spherical shapes are characterized by  = 0 and deformed ones by   0. The angle  

allows one to distinguish between axially symmetric deformed nuclei,  = 0
0
 for prolate and  = 

60
0
 for oblate deformation and 0

0
 <  < 60

0
 for triaxial nuclei. 

3. THE POTENTIAL ENERGY SURFACES (PES,S) 

The PES
,
s are determined by calculating the expectation value of the Hamiltonian 

 

The intrinsic coherent state       is normalized. 

For distinct values of (,) , we have the overlap 
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The matrix elements of each operators in the Hamiltonian are calculated using the concept of 

Ginocchio and Kirson [21]. 

The expectation value E (N, , in the ground state can be written in the form 

 

Hamiltonian parameters , a1,a2  in equation (1), and are given by : 

 

 

 

 

4. CRITICALITY CONDITIONS 

To examine the PES
,
s , a phase transitions might occur when the order parameters akl varied and 

pass through a critical points. Since the parameter a01 controls the steepness of the potential, 

therefore, the dynamical fluctuations is strongly affects the energies of excited intrinsic states. The 

parameter a01 = 0 gives a  - flat potential and a decrease of a01 introduces a  - dependence, the 

potential with a minimum at  =0. Changing a01 will indeed induce a  - unstable to symmetric 

rotor transition. It best to simultaneously vary a10 and a20 as well. 

One needs to determine the locus of points for which the first derivative of equation (9) must be 

zero and the second derivative must be positive, this gives for  =0, the following 

 

And 

 

One minimum occurs at =0, this corresponding to the spherical phase 

(a10 > a
2
01     / 4 | a20 |) and a deformed phase >0 appears for a01    < 0 and (a10 < a

2
01     / 4 | a20 | ). 

For   ,0 and  a1= 3 a2  8 and eliminating the contribution of the one body terms of 

the quadrupole - quadrupole interaction , the PES
 
 N take the form 

 

With   
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If  , the critical point is at c = 2/9 or     

and the equilibrium value of the deformation parameter at c is  

 

For the vibrational limit U (5), the corresponding critical point is at =0, while for the rotational 

limit SU(3) with     , = 0 and a1 = 0 and eliminating the contribution of the one body 

terms of the quadrupole - quadrupole interaction , yield 

 

 

 

and the PES take the form 

 

and the equilibrium value is obtained by solving the equation 

 

which yield    (for prolate    =0) 

 

Fig1. Illustrate the PES,s for the pure harmonic oscillator and the axial symmetric rotator. 

Figure (1). The  PES
,
s as a function of the deformation parameter (a)for vibrator(a10 =4 5,a01 =  

a20 =0) and(b),(c) for symmetric rotator(a10 =-110,a01 = -40 , a20 =580),( a10 =-135,a01 = -45, a20 =80). 

To investigate the U(5)- SU(3), we show in Figure(2) , the PES
,
s for N=10 and    for 

a set of significant values of the model  parameters listed in Table(1) . 

Table1. The set of IBM parameters to describe shape - phase transition from vibrator (q) to rotator (f), the 

critical point is at (c). The boson number N=10 and structure parameter  is fixed at  

Curve a0 a10 a01 a20 

A 0 10 0 10 

B -0.6337 0.6521 -3.2265 4.6448 

C -0.6400 0.5600 -3.2583 4.5920 

D -0.6775 0.0068 -3.4492 4.2751 

F -1.2500 -8.4375 -6.3639 -0.5625 
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Fig2. The PES,s as a function of the deformation parameter for shape phase transition from 
vibrator(panel a) to rotator (panel f) , the critical point is at(panel c).The boson number is N=10 and the 

structure parameter  is fixed at . 

We observe the evoluation from a spherical potential (a) whose minimum is found at =0, to 
potential with well deformed (f) . In particular (c), the spherical and the prolate deformed minima 

are degenerate and this condition defines the critical point of the first order phase transition. 

5. ENERGY RATIOS AND ELECTRIC QUADRUPOLE TRANSITION PROBABILITIES. 

To get the characteristics of the evoluation of the collectivity in even- even nuclei, the behavior of 

the energy ratios R I2 = E (I) E (2) will be studied  

 

While energy levels give important clues as to the existence of symmetries, better inferences are 
gained by a study of electric quadrupole transition between states. The E2 transitions provide 

more stringent test of the model. In the IBM, the most general E2 transition operator is written as 

[22] 

† † †
    

where α2 is the boson effective charge determined from the fit to the B(E2,21
+
   01

+
  ) and β2 

may be determined from the quadrupole moment Q(21
+
). The ratio β2 / α2 = in the SU 

(3) limit.  

It is commonly assumed that the ratios of the B (E2) reduced transition probabilities between 

levels of the ground state band takes the values between vibrational and rotational limits. The 
B(E2) ratios for the dynamical symmetry limits U(5) and SU(3) of the IBM are : 
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i.e B42  2 for U(5) and B42 107 for SU(3)                                       

6. APPLICATION TO EVEN- EVEN ER-YB- HF ISOTOPES  

Nuclei in rare – earth elements are well known examples of the U(5) – SU(3) transitions which 

exhibit a transition of nuclear shape from spherical to deformed form. In our calculations we will 

apply the formalism outlined in the previous sections to the rare earth 
154-168

 Er, 
156-172

 Yb and 
160-

175
 Hf isotopes with total number of bosons from 8 to 16.  

First , energy levels E(Ii) , E2 transition rates B(E2) and two neutron separation energies S2n(I) 

are selected and fitted with our IBM -1 Hamiltonian equation (1).  

A computer simulated search program has been used to get a minimum root – mean- square (rms) 
deviations between the experimental data and the calculated ones derived from our present four 

parameters model. The quality of the fitting is indicated by the common definition of the chi:  

 

 

 

Where the sums are over the available data points NE, NB (E2) and NSn in number respectively. The 

experimental data are taken from the National Nuclear Data Center (NNDC) and (ENSDF) [23]. 

The best adopted model parameters a0,a10,a01 and a20 for each nucleus are listed in Table (2).  

Table2. The model parameters a0,a10,a01,a20 (all in KeV) as derived in fitting procedure used in the 

calculation for Er-Yb -Hf  isotopic chains 

a20 a01 a10 a0 NB A Nuclei 

6.4219 1.0904 4.1458 -0.3750 9 154  

 

 

68Er 

4.8612 -1.6404 0.0471 -0.6875 10 156 

4.4739 -2.0541 -1.6586 -0.7875 11 158 

4.1401 -2.3636 -3.0403 -0.865 12 160 

3.7667 -2.5496 -5.0526 -0.9375 13 162 

2.9444 -2.1596 -7.8687 -1.0500 14 164 

2.1506 -2.1110 -10.5018 -1.1375 15 166 

3.5595 -2.3668 -8.7062 -1.0250 16 168 

5.1262 -0.16687 2.2587 -0.5125 8 156  

 

 

70Yb 

4.3347 -0.5704 -0.2876 -0.7250 9 158 

3.7145 -1.1617 -2.4411 -0.8625 10 160 

3.6775 -1.6163 -4.8400 -0.9000 11 162 

3.7655 -2.2319 -4.1093 -0.9125 12 164 

3.9681 -2.7158 -4.5813 -0.9125 13 166 

4.0554 -3.1366 -5.3088 -0.9250 14 168 

4.7078 -3.9287 -4.6984 -0.8750 15 170 

5.5202 -5.9652 -2.8232 -0.7750 16 172 

4.0422 -0.6285 0.1474 -0.7000 8 160  

 

 

 

72Hf 

3.7269 -1.0284 -1.4686 -0.8125 9 162 

3.5734 -1.5153 -2.6354 -0.8750 10 164 

3.9131 -1.9547 -2.8484 -0.8625 11 166 

4.0390 -2.4694 -3.4630 -0.8750 12 168 

4.4970 -3.3950 -3.1845 -0.8375 13 170 

4.8711 -3.8524 -3.2764 -0.8250 14 172 

5.5373 -5.0213 -2.2645 -0.7625 15 174 

5.4584 -5.0031 -3.6497 -0.5625 16 176 
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The structure parameters  was fixed at   . For all nuclei in the isotopic chains investigated 
here, the geometric character can be declared by plotting the PES

,
s obtained from the IBM-1 

Hamiltonian versus the deformation parameters β .This is illustrated in Figures (3-5).  

 
Fig3. Er 

 

Fig4. Yb 
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Fig5. Hf 

We observe that the nuclei in each isotopic chain evolve from spherical to axially symmetric well 

deformed when moving from the lighter to heavier isotopes, i.e U(5)-SU(3) first order shape 

phase transition. 

In  Figure (6) we give the energy ratios R I/2 = E(I) / E(2) for the I
π 
= 4

+
,6

+
,8

+
 and 10

+
 levels of the 

critical nuclei  
156-160

Er , 
158-162

Yb and 
160-164

Hf  compared with those of the dynamical symmetry 

limits U(5) and SU(3). 

 

 

Fig6. Normalized excitation energies R I/2 = E(I1
+) / E(21

+)  for156, 158,160Er (N=10,11,12) , 158,160,162Yb 

(N=9,10,11) and 
160,162,164

Hf (N=8,9,10) nuclei and comparison to U(5) and SU(3) predictions. 

We can see that the IBM data lie between the two limits. In Figure (7), we give the calculated 

ratios B I+2 / 2 = B (E2, I+2→I) / B (E2, 21
 +

→01
+
) in the ground state band for the boson number 

N=11 which is a measure of nuclear collectivity. A comparison in made with dynamical 

symmetries U(5) and SU(3) predictions. 



Nuclear Shape Phase Transition in Er-Yb-Hf Isotopes Using the Interacting Boson Model

 

67Page | International Journal of Advanced Research in Physical Science (IJARPS)                                

 
Fig7. The calculated ratios B (E2, I+2→I) / B (E2, 21

 +→01
+) for the yrast band at the critical boson 

number N=11 compared to the dynamical symmetries U(5) and SU(3) predictions. 

7. CONCLUSION 

We have analyzed the PES
,
S and the critical points of the U(5) - SU(3) nuclear shape phase 

transition obtained from the sd- IBM and in the boson intrinsic coherent state framework . The 

validity of the model is examined for the rare- earth chains Er-Yb-Hf with neutron number from 

86 to 104. 

The parameters of the model were obtained by performing a computer simulated search program 

in order to obtain a minimum root mean square (rms) derivation between the calculated and the 

experimental selected excitation energies, B(E2) values and two neutron separation energies.  

Our analysis revealed a shape transition from spherical vibrator to axially deformed rotor when 

moving from the lighter to heavier isotopes. 
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