

Exact Electron Rest Mass Equivalent Deduced from Hydrogen Yin Yang Energy

Janez Špringer*

Cankarjeva cesta 2, 9250 GornjaRadgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 GornjaRadgona, Slovenia, EU

Abstract: The exact electron rest mass equivalentwasdeduced from Hydrogen yin yang energy.

Keywords: Exact electron rest mass equivalent, Hydrogen yin yang energy

1. INTRODUCTION

The exact electron rest mass equivalent will be proposed with the help of Hydrogen yin yang energy.

2. PROPOSAL

It is proposed that the ratio of the energy equivalent of the electron rest $massm_e c^2$ and the yin yang energy of the Hydrogen molecule $E_{yin yang}^{H_2}$ [1]should be rounded on the elliptic surface by the natural ratio[2] as follows (See appendix):

$$R_{rounded} \approx \frac{m_e c^2}{E_{yin yang}^{H_2}} . s(1) \in \mathbb{N}.$$
(1)

Where the average elliptic-hyperbolic values (n) and elliptic valuen are related by the formula:

$$s(n) = n \left(2 - \frac{1}{\sqrt{1 + \frac{\pi^2}{(n)^2}}} \right).$$
(2)

Giving for the unit value n = 1:

$$s(1) = 1,696\ 685\ 528\ 947\ \dots \tag{3}$$

For the electron rest mass energy equivalent $m_e c^2 = 510\,998.950\,00(15)\,eV[3]$ and yin yang energy of the Hydrogen molecule $E_{yin yang}^{H_2} = 0.061\,981\,636\,40$ eV [1]the next natural ratio is given:

$$R_{rounded} = 13\,988\,087. \tag{4}$$

If for such a ratio no alignment energy is needed the exact energy equivalent of the electron rest mass can be proposed:

$$m_e c^2 = 510\ 998,949\ 17\ eV.$$

What is a little under thelower limit of CODATA valueyielding 510 998.949 85 eV[3].

3. CONCLUSION

Maybe true, but not necessarily

DEDICATION

To the art of thinking

REFERENCES

[1]JanezŠpringer (2023) "Subtle Bond of Hydrogen Molecule "International Journal of Advanced Research in Physical Science (IJARPS) 10(12), pp.4-5, 2023.

(5)

[2] JanezŠpringer (2021). Hydrogen Alignment Energy and Liquid-Liquid Critical Point. International Journalof Advanced Research in Physical Science (IJARPS) 8(7), pp.15-17, 2021.

[3]"2018 CODATA Value: electron mass energy equivalent in MeV". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2024-05-02.

APPENDIX

Actually for
$$R_{average\ elliptic\ -hyperbolic\ } = \frac{m_e c^2}{E_{yin\ yang}^{H_2}}$$
 should hold

$$R_{rounded\ } = \frac{m_e c^2}{E_{yin\ yang}^{H_2}} \cdot \frac{s(1)}{1} \frac{\frac{m_e c^2}{E_{yin\ yang}^{H_2}}}{s\left(\frac{m_e c^2}{E_{yin\ yang}^{H_2}}\right)} \in \mathbb{N}.$$
(a)

What because of similarity $\frac{m_e c^2}{E_{yin yang}^{H_2}} \approx s\left(\frac{m_e c^2}{E_{yin yang}^{H_2}}\right)$ becomes

$$R_{rounded} \approx \frac{m_e c^2}{E_{yin yang}^{H_2}} . s(1) \in \mathbb{N}.$$
 (b)

Citation: Janez Špringer. " Exact Electron Rest Mass Equivalent Deduced from Hydrogen Yin Yang Energy" International Journal of Advanced Research in Physical Science (IJARPS), Vol 11, issue 05, pp. 1-2., 2024.

Copyright: © 2024 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.