1. INTRODUCTION
The universe in the light of diverse untouchable mass and wavelength will be discussed.

2. THE MASS AND CO-MASS OF THE OBSERVABLE UNIVERSE
The mass value of the observable universe can be offered as the average of ten estimates of the total mass of the observable universe $m_1 = 2.9 \times 10^{54} \text{kg}$ [1].

In Heraclitean dynamics the co-mass m_2 can be attributed to the mass m_1 on the energy sustainable way so that the geometric mean of two masses gives the diverse untouchable mass m which nominally equals the factor $\sqrt{\frac{h}{c}}$ [2]:

$$ m = \sqrt{m_1 m_2} = \sqrt{\frac{h}{c}}. \quad (1) $$

Here h and c is Planck constant and the speed of light, respectively.

Applying the equation (1) the co-mass of the observable universe m_2 is given:

$$ m_2 = \frac{h}{c} \frac{1}{m_1} = 7.6 \times 10^{-97} \text{kg}. \quad (2) $$

The wavelength of the mass of the observable universe is the next:

$$ \lambda_1 = \frac{h}{c} \frac{1}{m_1} = 7.6 \times 10^{-97} \text{m}. \quad (3) $$

It nominally equals the co-mass of the observable universe m_2.

And the wavelength of the co-mass of the observable universe is the next:

$$ \lambda_2 = \frac{h}{c} \frac{1}{m_2} = 2.9 \times 10^{54} \text{m}. \quad (4) $$

It nominally equals the mass of the observable universe m_1.

Thus the concerned nominal equality holds for the wavelength λ of the untouchable mass m, too:

$$ \lambda = \sqrt{\lambda_1 \lambda_2} = \sqrt{\frac{h}{c}}. \quad (5) $$

4. THE SIZE OF THE OBSERVABLE UNIVERSE
The wavelength λ_2 of the co-mass m_2 of the observable universe can be regarded as the true range of the present universe. It is much bigger than the known diameter of the observable universe [3]:

$$ \lambda_2 = 2.9 \times 10^{54} \text{m} \gg d_{\text{observable universe}} = 8.8 \times 10^{26} \text{m}. \quad (6) $$
5. CONCLUSION

Modesty seems to broaden horizons

DEDICATION

To modesty [4]

REFERENCES

[4] (7) What is the difference between being modest and being humble? - Quora, Retrieved July 2023