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Abstract: We evaluate the cosmological constant from the point of view of the de Broglie-Bohm pilot-
wave theory. In Schrödinger picture we study the effects of trans-Planckian physics on the de Broglie-Bohm 

quantum trajectory of massless minimally coupled scalar field in de Sitter space. For the Corley-Jacobson 

type dispersion relations with quartic or sextic correction, it is shown that through de Broglie’s first-order 

dynamics, there exists a transition in the evolution of the quantum trajectory from well before horizon exit 

to horizon exit, providing a possible mechanism for generating a small cosmological constant. Moreover, 

comparing the trans-Planckian effects of both quartic and sextic corrections on the quantum trajectory, we 

find that the latter is much smaller than the former. We also show how the cosmological constant reduces 

during the slow-roll inflation at the grand unification phase transition through calculating explicitly the 

finite vacuum energy density due to fluctuations of the inflaton field. Finally, we suggest the possibility that 

a small current value of the cosmological constant could be obtained through cascade transition in the 
evolution of the Universe.   

Keywords: De Broglie-Bohm trajectory, inflation, cosmological constant, trans-Planckian physics. 

 

1. INTRODUCTION 

The cosmological constant problem [1] is one of the outstanding theoretical challenges in modern 
physics. While cosmic acceleration [2, 3] suggests that the Universe has a small positive 

cosmological constant (
41231018.1 PlM in Planck units, 

2/1GM Pl

191022.1  GeV 

is the Planck mass), we expect a cosmological constant of order 
4

PlM  from an effective quantum 

field theory up to the Planck scale. Therefore the discrepancy between the observational and 
theoretical values is of 123 orders of magnitude.   

Actually before the Big Bang the Universe was also in an era of inflation with an exponentially 

increasing scale factor. In the standard inflationary scenario, usual realization of inflation is 
associated with a slow rolling inflaton minimally coupled to gravity [4]. However, standard 

inflationary predictions can have two extensions. The first extension is associated with the 

ambiguity of initial quantum vacuum state, and the choice of initial vacuum state affects the 

predictions of inflation [5, 6]. For example, a deterministic hidden-variables theory such as the de 
Broglie-Bohm pilot-wave theory [7, 8] allows the existence of vacuum states with non-standard or 

non equilibrium field fluctuations [9, 10], which result in statistical predictions that deviate from 

those of quantum theory in the context of inflationary cosmology [11, 12]. Recent study also 
shows that the quantum-to-classical transition of primordial cosmological perturbations can be 

obtained in the context of the de Broglie-Bohm theory [13].  

The second extension concerns the so-called trans-Planckian problem [14, 15] of whether the 
predictions of standard cosmology are insensitive to the effects of trans-Planckian physics. In fact, 

nonlinear dispersion relations such as the Corley-Jacobson (CJ) type were used to mimic the 

trans-Planckian effects on cosmological perturbations [14-16]. These CJ type dispersion relations 

can be obtained naturally from quantum gravity models such as Horava gravity [17, 18]. 
Moreover, in several approaches to quantum gravity, the phenomenon of running spectral 

dimension of spacetime from the standard value of 4 in the infrared to a smaller value in the 
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ultraviolet is associated with modified dispersion relations, which also include the CJ type 

dispersion relations [19, 20].  

In the previous work [21-25] we used the lattice Schrödinger picture to study the free scalar field 

theory in de Sitter space, derived the wave functionals for the Bunch-Davies (BD) vacuum state 

and its excited states, and found the trans-Planckian effects on the de Broglie-Bohm quantum 
trajectory of massless minimally coupled scalar field for the CJ type dispersion relations with 

sextic correction through Bohm‟s second-order dynamics. In this paper we try to study the trans-

Planckian effects on the quantum trajectories of scalar field for the CJ type dispersion relations 
with quartic or sextic correction through de Broglie‟s first-order dynamics. 

The paper is organized as follows. In section 2, the de Broglie-Bohm pilot-wave theory of 

massless minimally coupled scalar field in de Sitter space is briefly reviewed in the Schrödinger 

picture, and the de Broglie-Bohm quantum trajectories for scalar field with linear dispersion 
relation are given. In section 3, we study the effects of trans-Planckian physics on the massless 

minimally coupled scalar field during the slow-roll inflation, and use the CJ type dispersion 

relations with quartic or sextic correction to obtain the time evolution of the vacuum state wave 
functional and the corresponding quantum trajectories through de Broglie‟s first-order dynamics. 

In section 4, using the results of section 3, we calculate the finite cacuum energy density due to 

fluctuations of the inflaton field and use the back reaction to address the cosmological constant 
problem. Finally, conclusion and discussion are presented in section 5. In this paper we will set 

 =c=1.  

2. DE-BROGLIE-BOHM PILOT-WAVE THEORY OF SCALAR FIELD 

In this section, we begin by briefly reviewing how to define the de Broglie-Bohm pilot-wave 

theory of massless minimally coupled scalar field in de Sitter space in the Schrödinger picture (for 

the details see [25]). We consider the Lagrangian density for the scalar field  

1

2 , ,

1
( ) ( ) ( )

2
L g g x x x ,                                                                                                  (1) 

where  is a real scalar field, g = det g , , =0, 1, 2, 3. For a spatially flat (1+3)-dimensional 

Robertson-Walker spacetime with scale factor )(ta , we have 

,)( 2222 ixdtadtds 3,2,1i , 

L  3 2 2 2
0

1
( ) ( )

2
ia a .                                                                                                     (2) 

In the (1+3)-dimensional de Sitter space we have )exp()( htta , where aah /  is the Hubble 

parameter which is a constant.  

In the Schrödinger picture, from (2) we can obtain the time-dependent functional Schrödinger 
equation in momentum space [25]  

2
2 2 2 2

2

1 1 9
{ }

2 2 4
rk

rk rk

i a k h
t

,                                                                                (3)                                                                  

, ( , )rk rk rk
rk

t t .                                                                                                                  (4) 

Here, r =1, 2, ),,( 321 kkkk  denotes momentum, k1  and k2  are the real and imaginary parts of 

k  respectively, i.e. kkk i 21 . For each real mode rk , we have 

rkrk

rk

rkrk hka
t

i
2222

2

2

4

9

2

1

2

1
.                                                                          (5) 

Thus (5) governs the time evolution of the state wave functional rk in the { rk } 

representation. In terms of the conformal time  defined by 
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/d dt a , 1 1 1exph ht h a , ＜ ＜0,                                                                    (6) 

the normalized vacuum and its excited states are 

( ) ( )( , ) ( , )exp ,
rk rk rk

rk n rk n rk rkn
R i , rkn 0,1,2,…                                                        (7)  

with the amplitude ),()( rknrk
R  and phase ),()( rknrk

 

)
2

1
exp()(

!2

/2
),(

2

)(

2/1

)1(

2/3

)( rkrkn

rk

nrkn rkrk
H

Hn

h
R ,                                                (8) 

(1)
3/2

2
( ) 2(1) (1)

3/2 3/2

2

1
( , ) ( )

2 2rkn rk rk rk

Hhk
n d

H H

.                                                           (9) 

Here, rk  is defined by (1)
3/22 / /rk rkh H , )()( rknrk

H  is the nth-order Hermite 

polynomial, )(
)1(

2/3 kH  is the Hankel function of the first kind of order 2/3 , and the prime in 

(9) denotes the derivative with respect to k . The complete wave functionals 

are [ ] ( ), ( , )
rkn rk n rk

rk

t t , where ),,(][ ji nnn  means that mode i  is in the in  excited 

state, mode j  is in the jn  excited state, etc. For 0rkn , the ground state wave functional 

corresponds to the BD vacuum.  

Note that (3) implies the continuity equation 

0}{
2

2

rkrkrkt
                                                                                              (10) 

and the de Broglie-Bohm velocity field 

rk

rk

dt

d
,                                                                                                                                (11) 

where exp i . For a single mode rk , we have exprk rk rki  with
rk

rk , 

the continuity equation  

0
2

2

rk

rk
rk

rk

rk

t
,                                                                                               (12) 

and the de Broglie-Bohm velocity field  

rk

rkrk

dt

d
.                                                                                                                               (13) 

Here,  is interpreted as a physical field in field configuration space, guiding the evolution of 

rk  through (3) and (13). Substituting (9) into (13) and using  gives  

(1)
3/2

(1)
3/2

( )

( )

rk
rk

H kd
k

d H k
,                                                                                                        (14) 
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which yields the quantum trajectory 

)()(
)1(

2/3 zHCzrk ,                                                                                                                 (15) 

where / /z k k a h  is the ratio of physical wave number akk phys /  to the inverse of 

Hubble radius, and C  is an integration constant. 

3. TRANS-PLANCKIAN EFFECTS 

In this section we study the effects of trans-Planckian physics on the massless minimally coupled 

scalar field in the slow-roll inflation. Particularly, we use the CJ type dispersion relations 

s

s
aM

k
bkak 222 )(1)/( ,                                                                                                   (16) 

where M  is a cutoff scale, s  is an integer, and sb  is an arbitrary coefficient [13-15].  

3.1.  CJ Type Dispersion Relations with Quartic Correction 

We first focus on the CJ type dispersion relations (16) with 1s  and 01b . Notice that these CJ 

type dispersion relations can be obtained from theories based on quantum gravity models [17-20].  

3.1.1. Evolution of Vacuum Wave Functional 

Using ahkkz / , (3) then becomes  

2
2 2 2 2 2 2

2

1 1 9
{ 1 }

2 2 4
rk

rk rk

i z z h h
t

,                                                                (17) 

where
2

1

2 )/( Mhb , and the corresponding ground state wave functional of (17) is 

rk

rkkk aBA ))(
2

1
exp()(

21

)0()0( ,                                                                                 (18) 

where )()0(kA  and )(kB  satisfy respectively 

constdBiA kk )(
2

1
exp)()0( ,                                                                                  (19) 

0
4

9
)1(

)()(
)(

2

2222
zk

B

d

dB
iB kk

k .                                                      (20) 

In region I where Makk phys / , i.e., hMz / , the dispersion relation can be approximated 

by 
2222 )/( zkak , and the corresponding wave functional for the initial BD vacuum state is 

[25, 26]   

rk

rkkk aBA ))(
2

1
exp()(

2I1II

)0(

I

)0( ,  

constdBiA kk )(
2

1
exp)(

II

)0( ,                                                                               (21) 

z
H

H
k

i
H

Bk 2
)1(

4/3

2
)1(

4/3

2
)1(

4/3

I

2

4

)( ,                                                                                    (22) 
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where the prime in (22) denotes the derivative with respect to 2/2z . 

On the other hand, in region II where Makk phys / , i.e., hMz / , linear relation recovers 

22 k , and the corresponding wave functional for the non-BD vacuum state is [25, 26]  

rk

rkkk aBA ))(
2

1
exp()(

2II1IIII

)0(

II

)0( , 

 constdBiA kk )(
2

1
exp)(

IIII

)0( ,                                                                             (23) 

II

22 2 2
II II (1) II II (1)

1 2 3/2 1 2 3/2

2

( )

2Re
kB

C C H C C H

 

22 2 2
II II (1) II II (1)

1 2 3/2 1 2 3/2

22 2 2
II II (1) II II (1)

1 2 3/2 1 2 3/2

2Re

2
2Re

C C H C C H
k

i

C C H C C H

,                                                          (24) 

where the prime in (24) denotes the derivative with respect to z , and the constants 
II

1C  and 
II

2C  

satisfy 1
2

II

2

2
II

1 CC . Let c  be the time when the modified dispersion relations take the 

standard linear form. Then we have 1
22

cz  where hbMkz cc

2/1

1/ >>1 for 1~1b . Note 

that 
II

1C  and 
II

2C  can be obtained by the following matching conditions at c  for the two wave 

functionals (21) and (23) 

cc ZZ

II

)0(

I

(0) ,                                                                                                                        (25) 

cc ZZ
dz

d

dz

d
II

)0(

I

)0(
,                                                                                                               (26) 

which can also be rewritten respectively as 

I IIRe Re
c ck Z k ZB B ,                                                                                                            (27) 

I IIRe Re

c c

k k

Z Z

d B d B

dz dz
,                                                                                                       (28) 

by requiring
III

kk BB , 
III

rkrk
 and 

II

)0(

I

)0( kk AA  when czz . 

Using 
2

(1) 2 2 2 4 2
3/4 / 2 4 / 1 5 / 8 4 /H z z z z  with

1

cz , cz >>1 

and )1()( 23
2

)1(

2/3 zzzH , we obtain from (22), (24), and (27) 

)2cos(21
II

2

II

1

2
II

2

2
II

1 czCCCC .                                                                             (29) 

Here we choose 
II

1

II

1 CC  and )exp(
II

2

II

2 iCC , and  is a relative phase parameter. Then 

from (29) and 1
2

II

2

2
II

1 CC  we have 
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II
1 csc 2 cC z  , II

2 cot(2 )cC z ,                                                                                    (30) 

where 0)2sin( cz , 0)2cos( cz . Substituting (22) and (24) into (28) and keeping 

terms up to order cz/1  on the right-hand side of (28), we find 

c

c

c z
zCC

z

8
)2cos(

1 II

2

II

1
II II

1 24 sin 2 cC C z .                                                           (31) 

Using (30) in (31) yields 

c

c
z

z
4

1
)2cot(  or 

c

c
c

z

z
z

4

1

2
)2cot( .                                                                (32) 

Here we choose cc zz 4/1)2cot( , so that 
II

2C  is small for cz >>1 to avoid an 

unacceptably large back reaction on the background geometry. Therefore we have  

cz
C

4

1II

2 , 1
32

1
11

2

2
II

2

II

1

cz
CC ,                                                                        (33) 

or    1)2sin( cz , 
c

c
z

z
4

1
)2cos( .                                                                            (34) 

3.1.2. De Broglie-Bohm Quantum Trajectory 

In section 2, we defined the pilot-wave scalar field theory through de Broglie‟s first-order 

dynamics (3) and (13). Using the result about the evolution of vacuum state in subsection 3.1.1, 

we can further define it through Bohm‟s second-order dynamics (17) and (35)   

)(
2

2

QV
dt

d

rk

rk .                                                                                                             (35)      

Here the classical potential V and the so-called „quantum potential‟ Q  are given by 

2 2 2 2 2 21 9
1

2 4
rk

rk

V z z h h ,                                                                                            (36) 

2

)0(

2

)0(2

1

rkrk

Q ,                                                                                                             (37) 

where (0)  is given by (18)-(20) and (0)  is given by (8) with 0rln . Note that Bohm‟s 

dynamics in general yields more possible quantum trajectories than de Broglie‟s dynamics does 

[24], and this distinction between Bohm‟s and de Broglie‟s dynamics was also emphasized by 
Valentini. This is what we expect, because Bohm regarded (35) as the law of motion, with the de 

Broglie guidance equation (13) added as a constraint on the initial momenta.  

However, recently it was pointed out that Bohm‟s second-order dynamics is unstable. Small 
deviations from initial quantum equilibrium do not relax and instead grow with time [27]. On the 

other hand, de Broglie‟s first-order dynamics is a tenable physical theory. Therefore, we will 

investigate the quantum trajectories of scalar field through de Broglie‟s dynamics hereafter.     

In region I, from (21) and (22) we have 

 

4

2

1

4
),(

2
)1(

4/3

2I1

2
)1(

4/3

2
)1(

4/3
I

)0 ( d
H

za
H

H
k

rkrk ,                                                 (38) 
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where
2

(1) 2
3/4 / 2H z

2 2 4 24 / 1 5 / 8 4 /z z z , and the prime in (38) denotes the 

derivative with respect to 2/2z . Substituting (38) into (13) and using adtd /  and 

ahkkz /  gives 

I
I

rk
rk

z

k

d

d
.                                                                                                                              (39) 

The general solution of (39) is 

1II
zCrk

.                                                                                                                                (40) 

On the other hand, in region II, from (23) and (24) we have 

),(
II

)0 ( rk

2
(1)

3/2
1 II2

2 2
(1) (1)

3/2 3/2

2

1

4 2

md

rk

md md

H
k

a d

H H

,                                                 (41) 

where 
md

H
)1(

2/3  means 
)1(

2/3H  modified according to 

md
H

)1(

2/3

1/2
222 2 (1) (1)

1 2 3/2 1 2 3/22ReC C H C C H ,                                                  (42)                  

2

2
)1(

2/3

1
1

2
)(

zz
zH ,                                                                                                         (43) 

and the prime in (41) denotes the derivative with respect to z . Note that in region II,  

md
H

)1(

2/3  Becomes  

2
II

2

2
II

1

)1(

2/3

)1(

2/3 CCHH
md      

22

2
II

2

II

1
1

2
)2sin(

1

1
)2cos(2

z

z
z

z

z
zCC

,                                                             (44)  

Which can be approximated by 
)1(

2/3H  as z  decreases from 1czz  (well before horizon 

exit) to 1z  (horizon exit) by using (29), (33), and (34). Therefore, substituting (41) into (13) 

and using adtd /  and ahkkz /  yields the general solution  

1/2
II II (1) II 3/2 2

3/2 ( ) 2 / 1rk C H z C z z .                                                                             (45) 

Then, substituting (40) and (45) into the matching condition at cz  for 
I

rk
 and 

II

rk
 

cc ZrkZrk

III
                                                                                                                            (46) 

and using 1cz , we obtain 

2/1III 2/ czCC
.                                                                                                                  (47) 

Since in the 3-dimensional space rk  contains a factor 
2/3a  which is proportional to

2/3z , we can 

use a field redefinition rkrk au 2/3
, 

1)/( zhka , and (47) to rewrite (40) and (45) as 
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2/1I

2/3

I
zC

h

k
urk , 

2/122/1I

2/3

II
)1( zzC

h

k
u crk .                                                        (48) 

From (48) we see that for fixed k  and 1cz , as z  decreases from 1czz  to 1z , the 

scalar field value reduces 2/cz  times, i.e., there exists a transition in the time evolution of the 

quantum trajectory of scalar field. 

3.2.  CJ Type Dispersion Relations with Sextic Correction 

In this subsection, we consider the CJ type dispersion relations (16) with 2s  and 02b , and 

repeat the preceding calculations for these type dispersion relations. 

3.2.1. Evolution of Vacuum Wave Functional 

For this case, only (17), (20), and (22) are changed into 

2
2 2 4 2 2 2

2

1 1 9
{ 1 }

2 2 4
rk

rk rk

i z z h h
t

,                                                                (49) 

0
4

9
)1(

)()(
)(

2

4222
zk

B

d

dB
iB kk

k ,                                                      (50) 

2

2
)1(

2/1

2
)1(

2/1

2
)1(

2/1

I

2

6

)( z
H

H
k

i
H

Bk
,                                                                                   (51) 

where
4

2

2 )/( Mhb , and the prime in (51) denotes the derivative with respect to 3/3z . 

Using
2

(1) 3 3
1/2 / 3 6 /H z z ,

2

cz , hbMkz cc

4/1

2/ >>1 for 1~2b , and 

2
(1) 3 2

3/2 ( ) 2 / (1 )H z z z , we obtain from (51), (24), (27), and 1
2

II

2

2
II

1 CC   

)2cos(21
II

2

II

1

2
II

2

2
II

1 czCCCC ,                                                                             (52) 

II
1 csc 2 cC z , )2cot(

II

2 czC ,                                                                                 (53) 

where 0)2sin( cz , 0)2cos( cz . Substituting (51) and (24) into (28) and keeping terms 

up to order cz/1  on the right-hand side of (28), we find 

c

c

c z
zCC

z

8
)2cos(

2 II

2

II

1
II II

1 24 sin 2 cC C z .                                                           (54) 

Using (53) in (54) yields 

c

c
z

z
2

1
)2cot(   Or

c

c
c

z

z
z

2

1

2
)2cot( .                                                               (55) 

Here we choose
c

c
z

z
2

1
)2cot( , so that 

II

2C  is small for cz >>1 to avoid an unacceptably 

large back reaction on the background geometry. Therefore we have 

cz
C

2

1II

2 , 1
8

1
11

2

2
II

2

II

1

cz
CC ,                                                                         (56) 

or     1)2sin( cz ,
c

c
z

z
2

1
)2cos( .                                                                           (57) 
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3.2.2. De Broglie-Bohm Quantum Trajectory 

In region I, from (21) and (51) we have 

 

6

2

1

4
),(

2
)1(

2/1

2I12

2
)1(

2/1

2
)1(

2/1
I

)0 ( d
H

az
H

H
k

rkrk
,                                                 (58) 

where
2

(1) 3 3
1/2 / 3 6 /H z z , and the prime in (58) denotes the derivative with respect 

to 3/3z . Substituting (58) into (13) and using adtd /  and kz  ahk /  gives 

I
I

2

3
rk

rk

z

k

d

d
.                                                                                                                          (59) 

The general solution of (59) is 

2/3II ˆ zCrk
.                                                                                                                              (60) 

On the other hand, in region II, from (23), (24), and (41)-(45) we again have 

1/2
II II (1) II 3/2 2

3/2
ˆ ˆ( ) 2 / 1rk C H z C z z .                                                                             (61) 

Then, substituting (60) and (61) into the matching condition at cz  for 
I

rk
 and 

II

rk
 

cc zrkzrk

III

                                                                                                                            (62)                     

And using 1cz , we obtain 

1III ˆ2/ˆ
czCC .                                                                                                                      (63) 

Therefore, using (63) in (61) yields 

1/2
II I 1 3/2 2ˆ 1rk cC z z z .                                                                                                           (64) 

Since for 3-dimensional rk  contains a factor 
2/3a  which is proportional to

2/3z , we use a field 

redefinition rkrk au 2/3
 and 

1)/( zhka  to rewrite (60) and (64) as 

I

2/3

I
Ĉ

h

k
urk , 

2/121I

2/3

II
)1(ˆ zzC

h

k
u crk .                                                                  (65) 

From (65) we see that for fixed k  and 1cz , as z  decreases from 1czz  to 1z , the 

scalar field value decreases 2/cz  times, i.e., there exists a transition in the time evolution of the 

quantum trajectory of scalar field. 

To compare (48) with (65) for scalar field values, we set 
2/1IIˆ

czCC  so that in region II the 

scalar field has almost the same evolution for the 1s  and 2s  cases. Then (65) becomes  

2/1I

2/3

I

crk zC
h

k
u , 

2/122/1I

2/3

II
)1( zzC

h

k
u crk .                                                       (66) 

From (48) and (66) we then find that for 1~21 bb , cc zz 1 , the former is larger than the 

latter by a factor czz  in the early evolution as cc zzz , while the former is approximately 
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equal to the latter as z  decreases from 1cc zzz  to 1z . Therefore, if we compare the 

trans-Planckian effects of both quartic and sextic corrections on the quantum trajectory of scalar 

field, the latter is smaller than the former. 

4. VACUUM ENERGY AND COSMOLOGICAL CONSTANT  

Using the results of section 3, we proceed in this section to calculate the finite vacuum energy 
density, and use the back reaction constraint to address the cosmological constant problem. Notice 

that in the slow-roll approximation, the energy density of the scalar field is )(V , where 

2/)( 22mV .Thus, the mean value of the vacuum energy density  can be computed from 

the de Broglie-Bohm pilot-wave theory by defining a field configuration spatial average of a local 

magnitude weighted by 
2

)0(R : [28] 

d
m

R
2

22
2

)0( rkrkrkrk duuu
km 22

)0(2

32

),(
22

, 

2

32

22

km 3

1))(Re(

1

2

1
a

aBk

,                                                                                                 (67) 

Where the scalar field is redefined by rkrk au 2/3
, and  

 
3

2

1

1

2/3
2

)0( ))(Re(exp
))(Re(

),(
a

u
aB

aB
au rk

k

k

rkrk .                                        (68) 

Here ))(Re( 1aBk  denotes the real part of
1)( aBk , and the factor 

2/3a  in (68) appears 

through the normalization condition 

1),(
2

)0( rkrkrk udu .                                                                                                            (69) 

For the case 1s  and 01b , in region I, we have 
2

(1) 2
3/4 / 2H z  

2/4 z  with
1

cz . 

Then, using hzkha //1  and (22) in (67), we find  

I

1s 2

2

2h

m 4

24

1
hzzc ,                                                                                                      (70) 

where hbMzc

2/1

1/ . On the other hand, in region II, (24) can be expressed as 

2
(1)

3/2
II

2 2
(1) (1)

3/2 3/2

2

( )
2

md

k

md md

H
k

B i

H H

,                                                                                       (71) 

with 
md

H
)1(

2/3  defined as 

md
H

)1(

2/3

1/2
22 2 2

II II (1) II II (1)
1 2 3/2 1 2 3/22ReC C H C C H ,                                          (72) 

where
2

2
)1(

2/3

1
1

2
)(

zz
zH  From (29), (33), and (34), we see that 

md
H

)1(

2/3  can be 

approximated by 
)1(

2/3H  as z  decreases from 1czz  to 1z . Then, using ha /1  

hzk /  and (24) in (67), we find  
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II

1s 2

2

2h

m
2

42

2

1
1

4

1

z
hz .                                                                                         (73) 

From (70) and (73) we see that as z  decreases from 1czz  to 1z , the vacuum energy 

density reduces 2/
2

cz  times. Notice that this result can also be obtained from considering (48) 

about the time evolution of the quantum trajectory of scalar field at the end of subsection 3.1.2. 

We also notice that there is no back reaction problem if the energy density due to the quantum 

fluctuations of the inflaton field is smaller than that due to the inflaton potential, i.e., 

)()(
I

1
Vzz cs .                                                                                                                (74) 

Near the beginning of inflation at czz , the vacuum energy density due to the fluctuations of 

the inflaton field with maxkk  is expected to be [29]  

4

2

4

(max)2

4

0

2 8

1

8

1

2

1
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Mk
k

dk

a

k
phys

k

vac ,                                                               (75) 

where M  is the cutoff in (16). Therefore, we evaluate 
I

1s
 in (70) at 

cc zzz
3

 so that  

4

2

1

22

2
3I

1 4

1

2
) ( M

bh

m
zz cs

4M .                                                                             (76) 

In the slow-roll approximation, using 8/3)( 22
hMV Pl

 and (76) in (74) gives the constraint 

on 1b  as
2

2

1
3

1

h

M

M

m
b

Pl

. For 
1610~M GeV, which is the energy scale during inflation 

as implied by the recent BICEP2 experiment [30, 31], we have
3

1 102.3b .  

For the case 2s  and 02b , in region I, we have 
2

(1) 3
1/2 / 3H z

3/6 z  with
2

cz . 

Then, using hzkha //1  and (51) in (67), we find  

I

2s

42

22

2

4

1

2
hz

h

m
c ,                                                                                                       (77) 

where hbMzc

4/1

2/ . On the other hand, in region II, (24) can be again expressed as (71) with 

md
H

)1(

2/3  defined by (72). From (52), (56), and (57), we see that 
md

H
)1(

2/3  can be approximated 

by 
)1(

2/3H  as z  decreases from 1czz  to 1z . Then, using ha /1  hzk /  and (24) 

in (67), we find  

II

2s 2

42

22

2 1
1

4

1

2 z
hz

h

m
.                                                                                         (78) 

From (77) and (78) we see that as z  decreases from 1czz  to 1z , the vacuum energy 

density also reduces 2/
2

cz  times. Notice that this result can also be obtained from considering 

(65) about the time evolution of the quantum trajectory of scalar field in subsection 3.2.2. As 

before, there is no back reaction problem if 
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)(
I

2
V

s
.                                                                                                                             (79) 

Using 8/3)( 22
hMV Pl

 and (77) in (79) gives the constraint on 2b  as 
4

22 )(
9

1

hM

Mm
b

Pl

.  

For 
1610~M GeV, we have 2b 18104.1 . 

Furthermore, we find that the vacuum energy density reduces significantly in the evolution from 

well before horizon to horizon exit, providing a possible mechanism for generating a small 

cosmological constant. Specifically, from (70) and (73) we can see that 
1s
 changes as 

22
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when z  changes as 1
3

cc zz . From (77) and (78) we also see that 
2s

 changes as 
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24
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when z  changes as 1
3

cc zz . Because hM  and cc zz  (for the usual parameters 

1~~ 21 bb ), 
2s
 is always smaller than 

1s
 in the early evolution when czz , while 

2s
 and 

1s
 are approximately equal as z  decreases from 1czz  to 1z . Notice 

that this result can also be obtained from comparing (48) and (66) about the time evolution of the 

quantum trajectory of scalar field at the end of subsection 3.2.2. Thus, if we consider quartic 
correction and neglect sextic correction in nonlinear dispersion relations, we find that when z  

decreases as 1
3

cc zz , the cosmological constant 
2

/8 Plvac M  decreases as 

2 4 2 2 2
11/ / Plb M m M h 2 2 2

1(1/ ) Plb M m M 2 2 22 / / Plm h M                                 (82) 

Such a reduction of the cosmological constant happens during the inflationary era associated with 

the grand unification phase transition, at which the Hubble parameter is about 
1410 GeV, and the 

energy scale during inflation is about 
1610 GeV.  

Since recent astronomical observations [32] indicate that the current vacuum energy density and 

cosmological constant are 
47

,0
105.2~vac

 GeV
4

 and 
84

0 102.4~  GeV
2

, we suggest 

the possibility that a series of reductions similar to (82) could yield a small current value of the 

cosmological constant through cascade transition such as the electroweak, quark-hadron and 

current accelerating phase transitions in the evolution of the Universe. 

5. CONCLUSION AND DISCUSSION 

In the Schrödinger picture, we have considered the de Broglie-Bohm pilot-wave theory of a 

massless minimally coupled free real scalar field in de Sitter space. To investigate the possible 
effects of trans-Planckian physics on the quantum trajectory of the vacuum state of scalar field, 

we considered the CJ type dispersion relations with quartic or sextic correction. Through de 

Broglie‟s first-order dynamics, we find that there exists a transition in the evolution of the 
quantum trajectory from well before horizon exit to horizon exit, providing a possible mechanism 

for generating a small cosmological constant. Moreover, we find that if we compare the trans-

Planckian effects of both quartic and sextic corrections on the quantum trajectory, the latter is 
much smaller than the former. 

We also calculate explicitly the finite vacuum energy density due to fluctuations of the inflaton 

field, and show how the cosmological constant reduces during the slow-roll inflation at the grand 

unification phase transition. Then we suggest the possibility that a series of similar reductions 
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such as electroweak, quark-hadron and current accelerating phase transitions could yield a small 
current value of the cosmological constant in the evolution of the Universe. 

Finally we note that (75) is calculated in the usual quantum theory, in which the standard quantum 

equilibrium state in the context of de Broglie‟s dynamics is such that an ensemble of inflaton 

fields with the initial wave functional ),( 0rk has initial field configurations )( 0rk  that are 

distributed according to the Born rule, with a density of probability 
2

00 ),(),( rkrkP  in 

configuration space at 0 . The effects of possible non equilibrium ensemble distributions 

2

00 ),(),( rkrkP  at the Planck scale or during the inflation may be shown through the 

inclusion of nonequilibrium factor )(k  for each mode [12]. This correctional factor appears in 

the power spectrum for the inflaton fluctuations or the curvature perturbations, and in principle 
can be constrained by current observational cosmic microwave background data. As to the 

cosmological constant, the presence of similar correctional factors in (75) may change its value 

during inflation, but does not change essentially its reductive mechanism in (82). Therefore, it is 

expected that the prediction (82) applies not only for quantum nonequilibrium state with 1)(k , 

but also for quantum equilibrium state with 1)(k .                                                                                                                      
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