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Abstract: In this paper, by constructing Free-energy Functionals, the Thomas-Fermi theory has been 

extended to include the non-zero temperature effects in many-particle systems. 

Using the Sobolev-Lieb and the Hőlder inequalities, the constructed Free-energy Functionals were put into 

a form from which an extended Thomas-Fermi equation was derived. Hitherto, in this work, the two states 

Ψ0(r) and Ψ1(r), corresponding respectively to the square root of two densities 0(r) and 1(r), had been 

used to construct the new free-energy Functionals F[0(r)] and F[1(r)]. The states Ψ0(r) and Ψ1(r) were 

required to be mutually orthogonal, and the functional F[0(r)]  was considered as the ground state 

functional while F[1(r)] was the excited state functional with temperature  0.  From the functionals, the 

electron density matrix was derived and finally the total energy was computed for many-electrons system 

under the influence of the Coulomb and Yukawa Potentials. Various results were obtained and discussed. 

Keywords: Thomas-Fermi theory, Sobolev-Lieb inequality, Density functional method, Free-Energy 

functional, Functional derivative, Density matrix. 

 

1. INTRODUCTION 

1.1.  The Thomas-Fermi theory  

The theory of Thomas and Fermi, now known as Thomas-Fermi theory provides a functional 

form for the kinetic energy of a non interacting electron gas in some known external potential 

 (usually due to impurities) as a function of the density. It is a local density functional (LDF) 

and is based on a semi classical approximation. The formulation becomes exact for a uniform 
electron gas. 

1.2.  Definition  

A function f is said to be in  if  is finite, . 

 . If  with   

then  for all .  

Where . 

By Sobolev Inequality, Sobolev, S.L, (1938), we have: 

                                                                                           (1) 

Where, , and  S, some numerical constant. Lieb H. Elliott (1975), (1981) using Holder's 

Inequality,  

,                                                    (2) 

And letting   the Sobolev inequality is 

refined to give a weaker but more useful inequality: 
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 But,  therefore equation (1) can be written as:      

  , where     

Using the above inequalities, the kinetic energy density is seen to be proportional  so 

that kinetic energy per particle is: 

                

For an interacting system, if the form of the interaction potential is known as a function of the 
ground state density, such as in the density functional theory, one can also add this contribution to 

the external potential , and solve the non-linear equations again, now with an effective 

potential  ; 

                                         (3) 

Here, the newly added terms are respectively the Coulomb interaction (Hartree potential) and the 

exchange-correlation potential seen by an electron. The latter has a simple expression in the local 

density approximation (LDA) of the density functional theory. Within the Hartree-Fock theory, 
the exchange energy of the Jellium model was derived as the function of the density. From this 

functional, it is possible to deduce an exchange-only potential which is obtained by differentiating 

the exchange energy with respect to .  Using this potential in the TF equation above yields the 

Thomas-Fermi-Dirac equation in a suitable unit: 

                                                                  (4) 

That is, for a given   and a given external potential, the solution needs to be found iteratively as 

the equation has become an integral equation. 

One can transform the Thomas-Fermi equation into the integral form (4) into a differential form. 

The function to search for will be the electrostatic potential generated by  . We introduce this 

potential as: 

  

It must satisfy the Poisson equation: 

                                                                                                                    (5) 

From Eq. (3) one extracts the electron density: 

                                                                    (6)                                   

This is the Thomas-Fermi equation in differential form.  

In summary, we can write the energy functional of Thomas-Fermi as: 

                               (7) 

In suitable units , where: ,  

And  numerically, the constraint on  is  the 

functional  is convex. 

The justification for this TF functional is this:  

 The first term in equation (7) is roughly the minimum quantum-mechanical kinetic energy of 

N electrons needed to produce an electron density . The fact that electrons are fermions is 

crucial here. This minimum energy is, in fact, the semi classical energy and is known to be 

exact in the limit where the shape of  is fixed and N goes to  The first term is also 
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conjectured by Lieb H. Elliott and Thirring W.E. (1975) to be a lower bound to the electronic 

kinetic energy when the density is . 

 The second term is the attractive interaction of the N electrons with the K nuclei, via the 

Coulomb potential V. 

 The third term is approximately the electron-electron repulsive energy. 

  is the nuclear-nuclear repulsion. While it is a constant, it is an important constant because it 

determines whether or not binding can occur, i.e., whether or not the energy can be lowered 

by moving the nuclei far apart from each other. 

 The minimum energy is gotten by first taking  the functional derivative of equation (7) 

multiplying the result by  and integrate and finally subtracting the output from the same 

which yields: 

                                                                  (8)                                        

1.3. The Free Energy Functional 

Consider the foregoing results when the temperature of the system is low, but non-zero. 

A thermodynamic system can also be described in terms of Helmholtz free energy, F(T,V,N), the 

energy available for work at temperature . It is given by  

,                                                                                                                                (9)                                                       

Where is the entropy. Like internal energy  is a state function, and takes its minimum value 

under every given constraint.  

The minimization of Helmholtz free energy is a very useful principle. Many features such as 

phase transitions and formation of complex patterns in equilibrium systems can be analyzed using 

this principle. For our purpose, we construct the entropy S ≡ - σ and thereby construct the free 

energy functional; Let   be the density matrix of a system, then the entropy is defined 

by Ruskai, M. B. (2002) 

   ( , ') ( , ')NTr r r In r r                                                                                                    (10) 

Where  

( , ') ( , ) 1Tr r r r r dr    

Under the approximation  

( , ') ( , ) ( )r r r r r     We have the entropy functional; 

   [ ] ( , ') ( , ') ( ) ( )N r r In r r dr S N r In r dr                                                       (11) 

( ) ( ) ( 0)S N r In r dr                                                                                                    (12) 

Now at some finite temperature, Let ρo(r) be the ground state density and ρ1(r) the excited density, 

i.e. 1( ) ( ) (1 ) ( ), [0,1]or r r         the energy functional per particle is 

5/3 3 3[ ] ( ) ( ) ( ) ( ) ( ') ( ') '
2

g
k r dr V r r dr r r V r r d r d r                                           (13) 

Hence the Helmholtz free energy functional per particle is: 

)(][][][ SUF                                                                                               (14) 

Where g is the strength of interaction, and θ is a measure of temperature. With the 

constraint ( )r dr N Z   , we have, to minimize: Thomas, L.H, (1963) 
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5/3 3 3 3

3 3

[ ] ( ) ( ) ( ) ( ) ( ) ( ') ' ( ) ( )
2

( ) ( ) 1

g
F k r dr V r r dr r y V r r d r d r r In r d r

r In d r r d r

       

    

    

  

   

 

                        (15) 

Where   1( ) ( ) (1 ) ( ), [0,1]or r r         and λ is the Lagrange multiplier. This F[ρ] is 

strictly convex and therefore has a unique minimum That is, 

2/3 3[ ( )] 5
( ) ( ) ( ') ( ') ' ( ( ) 1 ( )) 0

( ) 3

F r k
r V r g r V r r d r In r In N

r

 
    


                                   (16)     

Clearly equation (16) has a unique solution; it shall be solved under Coulomb and Yukawa 

potentials respectively: ( ) / | ' |, ( ) exp( | ' |) / | ' |V r Z r r V r Z b r r r r           

2. RESULTS 

Table 1. The convergence under computation to the ground state energies of atoms with different nuclear 
charge Z, under Coulomb potential: equation (8) 

Z=1 Z=5 Z=10 Z=20 Z=40 Z=50 Z=90 Z=110 

-10.0017 -10.0021 -10.0000 -10.0066 -10.1568 -10.3653 -12.8448 -15.5350 

-10.1552 -10.2051 -10.2036 -10.2113 -10.3636 -10.5733 -13.0571 -15.7395 

-10.4386 -10.5825 -10.5848 -10.6001 -10.7677 -10.9848 -13.4984 -16.1955 

-10.8172 -11.0920 -11.1059 -11.1441 -11.3565 -11.5956 -14.1938 -16.9312 

-11.2504 -11.6842 -11.7221 -11.8072 -12.1093 -12.3912 -15.1469 -17.9553 

-11.6982 -12.3092 -12.3865 -12.5476 -12.9893 -13.3351 -16.3091 -19.2051 

-12.1265 -12.9226 -13.0548 13.3188 -13.9398 -14.3624 -17.5645 -20.5308 

-12.5103 -13.4890 -13.6880 -14.0725 -14.8860 -15.3821 -18.7436 -21.7197 

-12.8348 -13.9842 -14.2549 -14.7624 -15.7560 -16.2921 -19.6679 -22.5639 

-13.0947 -14.3949 -14.7340 -15.3489 -16.4320 -17.0010 -20.2147 .22.9581 

-13.2921 -14.7170 -15.1128 -15.8041 -16.9283 -17.4537 -20.3892 -23.0042 

-13.4335 -14.9535 -15.3882 -16.1159 -17.1900 -17.6539 -20.3892 -23.0784 

-13.5274 -15.1122 -15.5654 -16.2902 -17.2697 -17.6821 -20.5827 -23.8013 

-13.5823 -15.2036 -15.6571 -16.3535 -17.2698 -17.6987 -21.5469 -26.2043 

-13.6063 -15.2414 15.6847 -16.3567 -17.3328 -17.9036 -24.1948 -31.8283 

-13.6097 -15.2456 -15.6847 -16.3698 -17.6416 -18.6342 -29.8843 -42.8782 

Table 2. The convergence under computation to the ground state energies of atoms with different Nuclear 

charge Z. Under Yukawa potential equation (8) (Debye radius, b = 5.0, and l = 0) 

Z=1 Z=5 Z=10 Z=20 Z=40 Z=50 Z=90 Z=110 

-9.9927 -10.0154 -10.0444 -10.0809 -10.1144 -10.1208 -10.1256 -10.1327 

-10.2516 -10.2752 -10.3055 10.3445 -10.3829 -10.3918 -10.4066 -10.4186 

-10.7057 -10.7367 -10.7769 -10.8376 -10.9188 -10.9467 -11.0285 -11.0739 

-11.2687 -11.3223 -11.3953 -11.5258 -11.7285 -11.8088 -12.0854 -12.2318 

-11.8522 -11.9531 -11.3953 -12.3696 -12.8037 -12.9863 -13.6513 -13.9950 

-12.3849 -12.5644 -12.0977 -13.3214 -14.1096 -14.4501 -15.7129 -16.3629 

-12.8229 -13.1131 -12.8289 -14.4287 -15.8789 -16.1245 -18.1570 -19.2033 

-13.1507 -13.5785 -13.5456 -15.3381 -17.1187 -17.8958 -20.7878 -22.2783 

-13.3744 -13.9568 -14.2163 -16.3003 -20.5273 -19.6367 -23.3758 -25.3082 

-13.5124 -14.2547 -14.8206 -17.1747 -20.0138 -21.2330 -25.7174 -28.0431 

-13.5872 -14.4831 -15.3464 -17.9334 -21.2134 -22.6040 -27.6751 -30.3161 

-13.6197 -14.6538 -15.7887 -18.5620 -22.1933 -23.7110 -29.1930 -32.0610 

-13.6266 -14.7777 -16.4285 -19.0584 -22.9498 -24.5529 -30.2864 -33.3001 

-13.6197 -14.8638 -16.6368 -19.4297 -23.5005 -25.1551 -31.0177 -34.1130 

.-13.6068 -14.9192 -16.7811 -19.6886 -23.8742 -25.5563 -31.4888 -34.6024 

Equations (5), (6) and (7) were computed together with Coulomb potential under the influence of 

electron-electron repulsive energy (interaction) and the following results depicted in figures 1 & 2 
were obtained for a very small and very large neutral atom 
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Figure 1. Z=1 Coulomb 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Z = 90 (Th) Coulomb 

Figures 1&2: (a) the plot of Coulomb internal potential   versus radial distance , 

(in Bohr units). (b) The plot of minimum energy,  versus 

parameter/variable . (c) The plot of electron density, versus radial 

distance r. (d) the plot of electron distribution  versus radial distance. Plots 1, (a) to 

(d) are results of computations under Coulomb potential,  with 

 and Plots 2, (a) to (d) are results for  Z = 90, Thorium (Th) likewise. 

Similarly, equations (5), (6) and (7) were computed together with Yukawa potential under the 

influence of electron-electron repulsive energy (interaction) and the following results depicted in 
figures 3 & 4 were obtained for a very small and very large neutral atom 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Z = 1, Hydrogen (H), Yukawa potential 
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Figure 4.  Z = 90, (Th) Yukawa potential 

Figures 3&4: (a) the plot of Yukawa internal potential   versus radial 

distance , (in Bohr units). (b) The plot of minimum energy,  

versus parameter/variable . (c) The plot of electron density, versus 

radial distance r. (d) the plot of electron distribution  versus radial distance. Plots of 

figure 3, (a) to (d) are results of computations under Yukawa potential,   with 

 and Plots of figure 4, (a) to (d) are results for Z = 90, Thorium (Th) 
likewise. 

2.1.  Perturbed Under Coulomb Potential 

In this case, the potential  is written | ' |Z r r  , so that one solves 

3
2/35 ( ') '

( ) ( ) ( ) 0
3 | ' |

k Z r d r
r g In r In r

r r r


          

                                                (17) 

Under the condition that g = 1, θ = 1, λ – θ → λ we have 

3
2/35 ( ') '

( ) ( ) ( ) 0
3 | ' |

k Z r d r
r In r In r

r r r


         -

                                                        (18) 

Let η be a perturbation in ρ such that it is possible to write the latter as: 

                                                                                                                                    (19) 

Where τ is the unperturbed electron density and the solution of 

3
2/35 ( ') '

( ) 0
3 | ' |

k Z r d r
r g

r r r


     -

                                                                                    (20) 

Hence using (19), equation (18) can be written as 

   
2/3 35

( ) ( ) ( ') ( ') ( ') ' ( ( ) ( )) ( ) 0
3

k Z
r r g r r V r r d r In r r In r

r
                            (21) 

Applying binomial theorem to the first and the fourth terms in equation (26) we can write the 

following expressions 

3 3
2/3 ( 1/3)5 10 ' ( ') '

( ) ( ) ( ) ( ') ( ( ))
3 9 | ' | | ' |

( )
( ) 0

( )

k k Z d r r d r
r r r g r g In r

r r - r r r

r
In r

r


     


   



    

   

  -                                          (22) 

But, 
3

2/35 '
( ) ( ') 0

3 | ' |

k Z d r
r g r

r r r
      -

                                                                                       (23)    
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    -
                                                                            (24) 

Immediately, the potential of perturbation, ( )r , attached to the internal core is identified as 

3( ') '
( )

| ' |

r d r
r

r r



   -

,                                                                                                                   (25) 

and using the concept of Dirac distribution on (30) we have;  

2 ( ) 4 ( )r r                                                                                                                        (26)  

So that equation (29) can be written as; 

2/3

( ) ( )
( )

10
( )

9

g r r
r

k
r

 


 

 



                                                                                                            (27) 

Equations (26), (27), (11) and (18) were computed together and the following results depicted in 
figures 5 & 6 were obtained for a very small and very large neutral atoms. 

 

 

 

 

 

 

 

 

 

Figure 5. Z = 1, (H) perturbed Coulomb 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Z = 90, (Th), Perturbed Coulomb 
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Figures 5&6: (a) the plot of perturbed Coulomb internal potential   versus radial 

distance , (in Bohr units). (b) The plot of entropy  versus some 

parameter . (c) The plot of perturbation of electron density,  with versus 

radial distance r. (d) the plot of perturbed electron density,  and 

perturbed electron radial distribution  versus radial distance. Plots of figure 5, (a) to 

(d) are results of computations under Coulomb potential,   with 

.and Plots of figure 6, (a) to (d) are results with Z = 90, Thorium (Th) 

likewise. 

2.2.  Perturbed Under Yukawa Potential 

In this case, the potential V(r) is written
brZe r , so that one solves; 

| '|
2 /3 35

( ) ( ') ( ') ' ( ) ( ) 0
3

b r rk Ze
r g r V r r d r In r In r

r
      

 

                             (28) 

Under the condition that g = 1, θ = 1, λ – θ → λ we have 

2/3 35
( ) ( ') ( ') ' ( ) ( ) 0

3

bxk Ze
r r V r r d r In r In r

r
    



                                           (29) 

Following the same procedure as in section 3.1 above, we have the following equations 

2 2( ) 4 ( ) ( ) 2 ( )r r b r b r                                                                                          (30)  

2/3

( ) ( )
( )

10
( ) 1

9

r r
r

k
r

 




 



                                                                                                             (31) 

Equation (28), (29), 18 and (11) were computed together and the following results depicted in 

figures 7 & 8 obtained for a very small and very large neutral atoms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Z = 1 (H) Perturbed, Yukawa 
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Figure 8.  Z = 90 (Th) Perturbed, Yukawa 

Figures 7&8: (a) the plot of perturbed Yukawa internal potential   versus radial 

distance , (in Bohr units). (b) The plot of entropy  versus some 

parameter . (c) The plot of perturbation of electron density,  with versus 

radial distance r. (d) the plot of perturbed electron density,  and 

perturbed electron  radial distribution  versus radial distance. Plots of figure 7, (a) to 

(d) are results of computations under Yukawa potential,   with 

.and Plots of figure 8, (a) to (d) are results with Z = 90, Thorium (Th) 

likewise.  

3. DISCUSSION 

Figures 1&2 and 3&4 are plots of the atom under constraints which is equivalent to the excited 

state of the atom. The imposed constraints can be interpreted as the chemical potential of the 
electrons. It is also observed that atoms under Coulomb potential are more negative, that is more 

bound and stable than the Yukawa because Coulomb potential is long ranged while Yukawa 

potentials is short ranged.  

The plots revealed that negativity increases with nuclear charge, Z, making larger atoms more 

stable. This is one of the outstanding features of TF theory  

3.1.  Comparisons 

The various plots in sections 3.1 and 3.2 clearly reveal the differences between electron density 

graphs and their corresponding electron radial distributions. Under Coulomb potential, when 

temperature parameter, θ is non zero, there is an increase in the radial spread of the electron 

density and their corresponding electron radial distributions, whereas when θ is zero, there is a 
decrease in the radial spread of the electron density and their corresponding electron radial 

distributions. In particular, figure 6d, the radial spread of electron radial distribution is 2.795 for 

θ = 1 while figure 2d, the radial spread electron radial distribution is 0.351 for θ = 0. Similar 
effects are noticed under Yukawa potential.  

3.2.  Suggestions for Further Studies 

This work has been charted towards stability (at zero temperature) and weak excitation of atoms 
and molecules at non zero but low temperature. These have been observed under two potentials, 

(The Coulomb and the Yukawa).  

All the obtained results should be treated under Dirac correction (i.e. correlation taken into 

account) and also under Scott correction. The relevant equations are likely to be harder to solve 
and the computational work more intricate. 
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