
International Journal of Advanced Research in Physical Science (IJARPS) 
Volume 1, Issue 2, June 2014, PP 14-21 
ISSN 2349-7874 (Print) & ISSN 2349-7882 (Online) 
www.arcjournals.org

 

©ARC                                                                                                                                                    Page 14  

Thermosolutal-Convective Instability through Porous Medium 

Pardeep Kumar, Hari Mohan 
Department of Mathematics,  

ICDEOL, Himachal Pradesh University, 
Shimla, India 

pkdureja@gmail.com  
pkdureja@rediffmail.com

 
Abstract: An attempt has been made to investigate the thermosolutal convection of a heterogeneous 
Rivlin-Ericksen viscoelastic fluid layer through porous medium under linear stability theory. A discussion 
of different modes revealed that the principle of exchange of stabilities is not valid for the problem. Further, 
it is found that oscillatory modes exist under certain conditions and non-oscillatory modes are unstable. 
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1. INTRODUCTION 
The study of onset of convection in a porous medium has attracted considerable interest because 
of its natural occurrence and of its intrinsic importance in many industrial problems, particularly 
in petroleum-exploration, chemical and nuclear industries. The derivation of the basic equations 
of a layer of fluid heated from below in porous medium, using Boussinesq approximation, has 
been given by Joseph (1976). The study of a layer of fluid heated from below in porous media is 
motivated both theoretically and by its practical applications in engineering disciplines. Among 
the applications in engineering disciplines one can find the food process industry, chemical 
process industry, solidification and centrifugal casting of metals. The development of geothermal 
power resources has increased general interest in the properties of convection in porous medium. 
The theoretical and experimental results of the onset of thermal instability under varying 
assumptions of hydrodynamics have been discussed in a treatise by Chandrasekhar (1961) in his 
celebrated monograph. Lapwood (1948) has studied the stability of convective flow in a porous 
medium using Rayleigh’s procedure. The Rayleigh instability of a thermal boundary layer in flow 
through a porous medium has been considered by Wooding (1960). 

The investigation of thermosolutal convection is motivated by its interesting complexities as a 
double diffusion phenomenon as well as by its direct relevance to geophysics and astrophysics. 
Stomell et al. (1956) did the pioneering work regarding the investigations of thermosolutal 
convection in non-porous medium. This work was elaborated in different physical situations by 
Stern (1960), Veronis (1965) and Nield (1967). The problem of thermosolutal convection in a 
horizontal layer of saturated porous medium has also been studied by several workers [Nield 
(1968), Sharma and Sharma (1982)]. 

In all the above studies, the fluid has been considered to be Newtonian. Since viscoelastic fluids 
play an important role in polymers and electrochemical industry, the studies of waves and 
stability in different viscoelastic fluid dynamical configuration has been carried out by several 
researchers in the past. The stability of a horizontal layer of Maxwell’s viscoelastic fluid heated 
from below has been investigated by Vest and Arpaci (1969). The nature of instability and some 
factors may have different effects on viscoelastic fluids as compared to the Newtonian fluids. For 
example, Bhatia and Steiner (1972) have considered the effect of a uniform rotation on the 
thermal instability of a Maxwell fluid and have found that rotation has a destabilizing effect in 
contrast to the stabilizing effect on Newtonian fluid. In another study, Sharma and Sharma (1977) 
have considered the thermal instability of a rotating Maxwell fluid through porous medium and 
found that, for stationary convection, the rotation has stabilizing effect whereas the permeability 
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of the medium has both stabilizing as well as destabilizing effect, depending on the magnitude of 
rotation.  In another study, Sharma (1975) has studied the stability of a layer of an electrically 
conducting Oldroyd fluid (1958) in the presence of a magnetic field and has found that the 
magnetic field has a stabilizing influence. 

There are many elastico-viscous fluids that cannot be characterized by Maxwell’s or Oldroyd’s 
constitutive relations. One such class of elastico-viscous fluids is Rivlin-Ericksen fluid. Rivlin and 
Ericksen (1955) have studied the stress deformation relaxations for isotropic materials. Srivastava 
and Singh (1988) have studied the unsteady flow of a dusty elastico-viscous Rivlin-Ericksen fluid 
through channels of different cross-sections in the presence of a time-dependent pressure gradient. 
In another study, Garg et al. (1994) have studied the rectilinear oscillations of a sphere along its 
diameter in a conducting dusty Rivlin-Ericksen fluid in the presence of a uniform magnetic field. 
Sharma and Kumar (1996) have studied the effect of rotation on thermal instability in Rivlin-
Ericksen elastico-viscous fluid and found that rotation has a stabilizing effect and introduces 
oscillatory modes in the system. In another study, Sharma and Kumar (1999) have studied the 
thermal instability of a layer of Rivlin-Ericksen elastico-viscous fluid in the presence of 
suspended particles. 

Keeping in mind the importance in various fields particularly in the soil sciences, ground water 
hydrology, geophysics, astrophysics and bio-mechanics, the thermosolutal convection of a 
viscoelastic (Rivlin-Ericksen) incompressible and heterogeneous fluid layer saturated with porous 
medium, where density is ( )zf0ρ , 0ρ  being a positive constant having the dimension of density, 
and  is a monotonic function of the vertical coordinate , with  has been 
considered in the present paper. 

( )zf z ( ) 10 =f

2. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS 
Let us consider an infinite horizontal layer of  incompressible and heterogeneous Rivlin-Ericksen 
viscoelastic fluid of thickness ‘d ’, in porous medium of porosity ε   and medium permeability 

, bounded by the planes  and 1k 0=z dz = . Let z-axis be vertically upwards. The interstitial 
fluid (which is the fluid in pores) of variable density is viscous, incompressible and 
heterogeneous. The initial inhomogenenity in the fluid is assumed to be of the form ( )zf0ρ , 
where 0ρ  is the density at the lower boundary and ( )zf  be the function of vertical co-ordinate z 
such that . The fluid layer is infinite in horizontal direction and is heated and soluted 

from below leading to an adverse temperature gradient 

( ) 10 =f
( )

d
TT 10 −=β  and a uniform solute 

gradient ( )
d

SS0 −=′

0T

1β  where  and  are the constant temperatures of the lower and upper 

boundaries with  and also  and  are the constant solute concentrations of the lower 
and upper surfaces with  . The effective density is the superposition of the inhomogeneity 
described by  (a)    

0T

0S
1T

1S1T>

10 S>
( )zf

S

0ρρ =  , and (b) ( ) ( )[ ]SSTT −′−−+= 000 1 ααρρ  which is caused 
by temperature gradient and solute gradients. This leads to the effective density 

( ) ( ) ( )[ SSTTzf ]−′−−+= 000 ααρρ ,                                                                                     (1) 

where α  and α ′  are the thermal and solute expansion coefficients. 

The relevant Brinkman-Oberbeck-Boussinesq equations describing our problem are: 

,1

1

2
0 ⎥

⎦

⎤
⎢
⎣

⎡
−∇⎟

⎠
⎞

⎜
⎝
⎛

∂
∂′+++−= q

k
q

t
gpgrad

Dt
qD rrr
r

μμρρ                                                               (2) 

,0=qdiv r
                                                                                                                                      (3)  

( ) ,0. =∇+
∂
∂ ρρ q

t
r

                                                                                                                          (4) 



Thermosolutal-Convective Instability through Porous Medium 
 

International Journal of Advanced Research in Physical Science (IJARPS)                                 Page 16 

( ) ,. 2TKTq
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∇=∇+
∂
∂ r

                                                                                                                 (5) 

( ) ,. 2SKSq
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∂
∂ r

                                                                                                               (6)  

where ρμμ ,,, ′qr and p are the velocity, coefficient of viscosity, viscoelastcity, density and 
pressure of the fluid, T  the temperature, S  the solute concentration,  is the 
acceleration due to gravity, 

( gg −,0,0 )r

K  and K ′  are the thermal and solute diffusivities and  is the 
intrinsic permeability of the medium (

1k
∞→1k  corresponds to non-porous medium). 

Here in writing equations (2)-(6), porosity 10( << εε  and 1→ε corresponds to non-porous 
medium) corrections have not been included for avoiding the involvement of too many constants. 
In fact it does not affect the essence of discussions of the results. Strictly speaking, a constant 

factor ( )[ CCE SS 0/1 ]ρρεε −=  multiplies in the first term of equation (4) and a term 
ε
1

 

multiplies in the velocity term except in the Darcy’s resistance term ⎟⎟
⎠
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. Here Sρ  and  

are respectively the density and heat capacity of the solid material which forms the porous matrix 

and  is the heat capacity of the liquid. The thermal diffusivity 

SC

C K  is defined as 
C0

*
ρ

K λ
=  

where ( ) Sλεελλ −+= 1*  is the effective thermal conductivity and λ  and Sλ  are the thermal 
conductivities of the fluid and solid respectively. The solute diffusivity K ′  is defined 
analogously. Also a factor E ′  analogous to E  is multiplied in the first term of equation (5). 

 The initial state whose stability is to be examined is characterized by 

( )[ ] ∫−=′′−+=′−=−==
z

dzgppzzzfzSSzTTq
0
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Where  is the pressure at 0p .0ρρ =  

Let the system be slightly disturbed and as a result of this small perturbation, the various physical 
quantities undergo a change 
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Substituting (8) in equations (1)-(6) and linearizing them by neglecting second and higher terms 
and retaining only relevant terms appropriate to physical conditions, we obtain the linearized 
perturbations equations in component form as 
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Where ( .,, wvuq = )rδ                                                                                                                   (16) 

3. ANALYSIS IN TERMS OF NORMAL MODES  
The analysis of an arbitrary disturbance is carried out in terms of normal modes following 
Chandrasekhar (1961). The stability of each of the modes is discussed separately. We seek 
solutions of the equations (9)-(15) whose dependence on space-time coordinates are of the form 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] [ ]ntyikxikzYzLzzzWzVzUpwvu yx ++ΓΘ= exp,,,,,,,,,,,, δρδγθ , (17) 

Where  and  are the horizontal wave numbers and n  is the frequency of the harmonic 
disturbances. Also 
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 the wave number of the perturbation propagation. 
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Equations (21)-(23) in non-dimensional form can be written as 
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Equation (26) with the help of equations (24) and (25) is written as 
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The equations (24)-(26) and (28) are to be solved using boundary conditions. Here we consider 
the case where both the boundaries are free, following Chandrasekhar (1961), the appropriate 
boundary conditions for this case are  

0,0,02 =Γ=Θ== WDW  at 0=z  and .1=z                                                                     (29) 

4. RESULTS AND DISCUSSION OF MARGINAL STATES 
1. Stationary Convection 

When the instability sets in as stationary convection, the marginal state will be characterized by 
0=σ . Hence the substitution of  0=σ  in equations (21)-(23) gives 
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Integrating equation (30) and using the boundary conditions (29), we see that 
 etc. is the only possible solutions which led to contradiction to the 

hypothesis that initial state solutions are perturbed. 
0,0,0 =Γ=Θ=W

Therefore, the instability can not set in as stationary convection or in the other words the 
principle of exchange of stabilities is not valid for our problem. 

2. Oscillatory Convection 

Now for the proper solution of equation (28) for W  belonging to the lowest mode, we follow 
Chandrasekhar (1961), and find that zWW πsin0= , where  is constant. Then, from equation 
(28), we get 

0W
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As discussed earlier, the principle of exchange of stabilities being not valid for the present 
problem, the marginal state is governed by 2σσ ′= i  where 2σ ′  is real. Now letting 
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Substituting (32) in equation (31), we get 
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Separating equation (33) in real and imaginary parts, we obtain 
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From (35) and (36), the frequency of oscillations 2σ  in marginal state is given by 
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and from (27) and (34), Rayleigh number R  is given by 
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We now discuss the existence of overstable marginal states for various cases: 

⎡ −−+++ 222 1111 ApBxx π

Case (A): When 0>R , i.e. 3 0>
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Since  is always positive and  implies , therefore, if  i.e. 0A 03 >R 02 >A 01 >A 01 >−τ  i.e. 
KK >′ then there will be no real 2σ  resulting non-occurrence of overstable marginal state. But, 

if  satisfies the inequality 4R
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besides KK <′ and , then the marginal state may exist even when . 04 20
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When , the marginal state always exist whatever be the values of other parameters 

provided  and then 

03 <R
2

1 −A 04 20 >AA 2σ  is given by equation (37). 

3. Nature of Non-Oscillatory Modes 

For  i.e.  and03 >R 02 >R KK >′ , the only modes that may exist are non-oscillatory 
modes for which 02 =σ  and 1σσ =  ( 1σ  is real). Hence substitution of 1σσ =  and 
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,0413
2
12

3
11

4
10 =++++ DDDDD σσσσ                                                                                 (40) 

Where 

( ) ( )[ ]
( ) ( )[ ]( ) ( ) ( )[ ]
( ) ( ){ } ( )[ ] ( ) ( )

( )
( ) ( ){ } ( ){ }
( ) ⎪

⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

+−=

−′−++−+++=

′−+−

+++++′++++=

+++++′++++=

′++++=

2
2

222
4

12
2

2
22

1
222322

13

2
2
1

2

2222
11

22322
12

22223
1

222222
11

22223
10

111

11

1

τπ

τττπππτ

τπτπτπ

ππτππ

ππ

RaaD

pRaRRRapaBaapD

RRRpa
BappABaAapD

BaapABaAapD

ABaAapD

            (41) 

Equation (40) is the fourth degree characteristic equation in 1σ  with real coefficients and has four 
roots, which may be real. The constant term in the characteristic equation being negative, at least 
two of the roots are real, one positive and one negative. Thus, we have non-oscillatory modes, one 
of which essentially grows in time making the system unstable. 

5. CONCLUSIONS  
The thermosolutal convection in a layer of heterogeneous Rivlin-Ericksen viscoelastic fluid 
heated and soluted from below through porous medium is considered in the present paper. The 
investigation of thermosolutal convection is motivated by its complexities as a double diffusion 
phenomena as well as its direct relevance to geophysics and astrophysics. Thermosolutal 
convection problems arise in oceanography, limnology and engineering. Ponds built to trap solar 
heat and some Antarctic lakes provide examples of particular interest. The main conclusions from 
the analysis of this paper are as follows: 

• The principle of exchange of stabilities is not valid for this problem. 

• Frequency of oscillation and the Rayleigh number in the marginal state are given by equations 
(35) and (34), respectively. 

• For density distribution with positive gradient and KK >′ , the over stable marginal state do 
not exist and we have only non-oscillatory modes which make the system unstable. 
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• While for positive density gradient and KK <′ , the over stability may occur for the solute 
Rayleigh numbers satisfying (39). 

• For density distribution with negative gradient, the marginal state and overstable solution exist, 
irrespective of the values of other parameters. 
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