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Abstract: The effects of magnetic field on capillary-tissue exchange system where the rheology of flowing 
blood in the capillary is characterized by the modified Herschel-Bulkley fluid. Blood is the suspension of 

cells in plasma blood can be regarded as a suspension of magnetic particles (red cells) in non-magnetic 

plasma. An axially non-symmetric but radially symmetric stenosis is considered when an externally uniform 

magnetic field is applied on the flow. The effect of magnetic field is considered in the transverse direction of 

blood flow and viscosity of blood is taken as radial co-ordinate dependent. Assessment of the severity of the 

disease could be made possible through the variation of a parameter named as retention parameter. The 

concentration profile and associated physiological diffusion variable involved in the study for normal and 

diseased state have been analyzed. The model is also employed to study the effect of shape of stenosis on 

flow characteristics. Finally the significance of the present model over the existing published literature has 

been pointed out by comparing the results with other theories. 

 Keywords: Herschek-Bulkley fluid, Nutrition transport, Rheology, Magnetic field, Stenosis shape 

parameter.

 

1. INTRODUCTION 

The study of blood flow through mammalian circulatory system has been the subject of scientific 

research for about a couple of centuries. Like most of the problems of nature and life science, it is 
complex one due to the complicated structure of blood, the circulatory system and their 

constituent materials. The experimental studies and the theoretical treatment of blood flow 

phenomena are very useful for the diagnosis of a number of cardiovascular diseases and 

development of pathological patterns in human or animal physiology and for other clinical 
purposes and practical applications. It is known that blood is electrically conducting fluid. Thus 

by Lenz’s law, the Lorentz’s force will oppose the motion of conducting fluid which will alter the 

haemodynamic indicators of the blood flow, in grneral. Hence by the application of magnetic field 
the blood flow can be deaccelerated and so it may help in treatment of certain cardiovascular 

diseases and in the dieases with accelerated blood circulations such as hypertension, hemorrhages 

[4, 5]. This idea of electromagnetic fields in medical research was firstly given by [8] and later [2] 
discussed the possibility of regulating the movement of blood in human system by applying 

magnetic field. Flow and diffusion through capillary-tissue exchange system has also been 

identified as one of the thrust areas of research. In narrow capillaries, at times, the arterial 

transport become much larger as compared to axial transport and it contributes to the development 
of atherosclerotic plaques, greatly reducing the capillary diameter. The problem of flow and 

diffusion become much more difficult through a capillary with stenosis at some region when an 

externally uniform magnetic field is applied on the flow. The response of blood flow through an 
artery under stenotic conditions has been attempted by [1, 6]. Accordingly, considerable effort has 

been expended studying the fluid mechanics of flow through a stenosis [7, 3, 16]. Several workers 

[10, 12, 15] proposed various representative models for blood in narrow capillaries. Viscosity 

depending on the local variation of the concentration of the suspended cells has been introduced 
by [11]. In 1997 [14] studied the effect of concentration on viscosity and the effect of the 

concentration on blood flow through a vessel with stenosis and found it an important aspect from 

physiological point of view. [13] have also discussed the effect of the variation of concentration 
of the suspended cells of blood. The theoretical study of 

 
[9] pointed out that blood obeys the 
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Casson’s equation only in the limited range, except at very high and very low shear rate and that 

there is no difference between the Casson’s plots and the Herschel-Bulkley plots of experimental 
data over the rang where the Casson’s plot is valid. Also he suggested that the assumptions 

include in the Casson’s equation are unsuitable for cow’s blood and that the Herschel-Bulkley 

equation represents fairly closely what is occurring in the blood. Since the Herschel-Bulkley 
equation contains one more parameter than as compared to Casson’s equation, it would be 

expected that more detailed information about blood properties could be obtained by the use of 

the Herschel-Bulkley equation. Herschel-Bulkley equation is reduced to the mathematical models, 
which describes the behavior of Newtonian fluid, Bingham fluid and power law fluid by taking 

appropriate value of the parameters. Presented herein is the study of diffusion phenomenon in 

modeled normal and stenosed capillary-tissue exchange system. This model incorporates 

modified Herschel-Bulkley fluid representation for the blood flow through an axially non-
symmetrical but radially symmetric stenosis when a uniform magnetic field is externally applied 

on the flow. 

2.   FORMULATION OF THE PROBLEM 

Herschel-Bulkley fluid model- The stress-strain relation of Herschel-Bulkley fluid is given as; 

' n
' ' ' ' '

' 0 0

'
' ' '

' 0

du 1
f(τ ) = - = τ - τ , τ τ

dr μ

du
f(τ ) = - = 0, τ τ

dr

                                               (1)                  

'' ' '
' ' c

' '0

Rdp r dp
where τ = - , τ = - ,

2 2dz dz

 

and µ
’
  denotes  Herschel-Bulkley viscosity  coefficient,  

’
 0  is  yield  stress,  

’
  is  shear  stress,  

R
’
 c  is  the  radius  of  the  plug-flow  region,  u

’
  is  the  axial  velocity  along the  z

’
 direction and 

n is the flow behavior index
’
. The relation correspond to the vanishing of the velocity gradients in 

regions, in which the shear stress τ is less than the yield stress τ0
’
  this implies a plug flow 

wherever τ
’
 ≤ τ0

’
 when the shear rates in the fluid are very high, τ

’
 ≥ τ0

 ’
 , the Power-law fluid 

behavior is indicated. 

 

Fig 1.  Stenosis  

In the present analysis, it is assumed that the stenosis develops in the arterial wall in an axially 

non-symmetric but radially symmetric manner and depends upon the axial distance z and the 

height of its growth. The geometry of the stenosis, which is assumed to be manifested in the 
capillary segment, is described as [Fig (1)];  

(m 1) m' ' ' ' ' ' ' ' ' '
0 00

0

R (z) R [1 A[L (z d ) (z d ) ], d z d L

R , otherwise,
                           (2) 
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Where the parameter S

' m

0

m/(m-1)

0

δ m
A =

R (L ) (m -1)
  

where δs denotes the maximum height of stenosis at z
’
 = (d

’
 + L

‘
0 / m

m / (m – 1)
). The ratio of the 

stenosis height to the radius of the normal artery is much less than unity. R
’
(z) and R0 are the 

radius of the artery with and without stenosis respectively. L
‘
0 is the stenosis length, d

’
 represents 

the location of stenosis and m is stenosis shape parameter.  In the case of m ≥ 2, stenosis shape 

parameter indicates an axially symmetric stenosis. The ratio of the stenosis height to the radius of 
the normal artery is much less than unity.   

2.1 Governing Equations 

Governing equation can be written as:      

' '
' ' ' '

' ' ' '

P 1 u
r J B 0

Z r r r
                                                                                    (3)                            

where,  
' ' ' 'J (E u B )   

( M)
'

'

0

0

r

R
                                                                                                 

'E  -  Electric field  

'B  -  Magnetic field 

 -  Electric conductivity 

'J   -   Magnetic flux 

M  -  Parameter depending upon the hematocrit value of the blood.  

The concentration equation for the solute is expressed by  

' 2 ' '
' '

' '2 ' '

C C 1 C
u D

z r r r
                                                                                                    (4) 

Where C represents the concentration of the solute, u is the axial velocity and D the diffusion 

coefficient for the solute under consideration in the blood.  

2.2 Boundary Conditions 

Following boundary conditions are introduced to solve the above equations: 

 

'
'

'

' '

' '

' '

0

' '

L

'
'

'

'
' ' ' ' '

'

u
0 at r 0

r

u 0 at r R(z)

   is finite           at  r  = 0      

P  = P          at z  = 0

P  = P                  at z  = L 

C
0 at  r  = 0,  

r

C
D V N C at r  = R, 

r

                                                                                             (5) 
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where N
’
 is retention parameter, C

’
 is concentration; u

’
 is the axial velocity and D

’
 the diffusion 

coefficient.                                                                         

2.3 Non Dimensional Scheme 

'' ' ' '

0
0

0 0 0 0

' ' ' '

0 0

2

0 0 0

LR r
R , , r ,L , ,

R R L R

U R d z P u
Re ,d , z ,P ,u

L L U U

                                                   (6) 

 

The governing equations and boundary conditions are transformed to:   

(m 1) m

0 0
R(z) 1 A[L (z d) (z d) ], d z d L

1, otherwise,

                                       (7) 

where,  
m/(m-1)

m

0 0

δ m
A =

R L (m -1)
 

2
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2

u u
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p

z
                                                          (8)                                                                                                                                                                                           

where, J (E u B)  

Mr  

2 2
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B R
H  
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2 0 0
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                                                             (9) 

2

2
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3. SOLUTION OF THE PROBLEM 

By equation (8) and (9) we get,    

2 2 2

e 22 2 2

2 22
2

22 2 2

8 H 8 H 15 H
R 1 ...........

4 1 4 6 1
u

8 H HH
2 1 1 ...........

2 1 2 4 1

 

2 42 2

22 2 2

2 4 2 2 6
e

2

22 2 2 2

8 H rH r P
1 .........

2 1 Z2 4 1

P
R 8 H r 8 H 15 H rZ r ......

2 1 4 1 4 6 1

 (12) 

Using equation (9) we have,  

2 2 2

22 2 2

n

(1+3n)

8 8 15dp 2μ
P = - = 1 ...........

dz 4 1 4 6 1R

H H H
                          (13) 

 

to  determine  λ,  we  integrate  equation  (13)  for  the  pressure  PL  and  Po  are  the  pressure  at  

z = 0  and  z = L,  respectively,  where  L  is  the  length  of  the  tube. 
2 2 2

22 2 2

n

1+3nL 0
0

(1+3n)
0

n

0

8 8 15
12μ

4 1ΔP = P - P = 4 6 1
π R

...........

dz

R(z)
f(y)

R

L

H H H

     (14) 

The resistance to flow is given by the coefficient λ is define as follows [18]:                                                                   
2 2 2

e 22 2 2

0 2 22
2

22 2 2

22

22 2 2

2 2 2

e

22 2 2 2

8 H 8 H 15 H
R 1 ...........

4 1 4 6 1
L / 2R

8 H HH
2 1 1 ...........

2 1 2 4 1

8 HH
1 .....

2 3 1 2 4 1

8 H 8 H 15 HR 1
...

2 1 3 4 5 1 4 6 7 1
...

 (15) 

The apparent viscosity ( 0/ ) is defined as follow:  

           

                                                                                                   (16) 
 

app 1+3 n

0

1
μ =

R(z)
f(y)

R
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On using Eq. (15) the solution for apparent viscosity subject to the boundary conditions (11) is 

given as: 

                

22

22 2

app
2 2 2

e

22 2 2 2

4 8 H2H P
b ....

2 1 Z2 4 1

P
R 4 8 H 6 8 H 15 HZ 2 .....

2 1 4 1 4 6 1

                   

                                                                                                                                                      (17) 
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L 40 3
A

4 R 8R 8R
                                                                            

To solve the eq. (10) takes the form: 

2 2

0 1 1 1

2

1

ν R C C C1

D L η η ηx
                                                                                                         (19) 

The boundary conditions are: 

1

1
1 1

0

C
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η
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                                                                                            (20) 
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on using equation (20) and (21) gives,                                                                                                                                        

3 2 22

1 22 2 2 2 2

3 2 5 2 2
e

22 2 2 2 2 2 2

4R 8 H H2RH P
C ......

Z2 1 R 2 4 1 R

P
R 4R 8 H 6R 8 H 15 HZ 2R ....

2 1 R 4 1 R 4 6 1 R

                

                                                                                                                                                      (22)  

4. RESULTS DISCUSSION 

In order to have estimate of the quantitative effects of various parameters involved in the 

analysis computer codes were developed and to evaluate the analytical results obtained 

for resistance to blood flow, concentration profile and associated physiological diffusion 

variables for normal and diseased system associated with stenosis due to the local 

deposition of lipids have been determine. The results are shown in Fig 2-5 by using the 

values of parameter based on experimental data in capillary.    

 
 

Fig 2. Variation of resistance to flow with stenosis shape parameter 

Fig. (2) shows the results for resistance to flow for different values of stenosis shape parameter, 
stenosis length, stenosis size and yield stress. Resistance to flow decreases as stenosis shape 

parameter increases and increases as stenosis size, stenosis length and yield stress increases. 

Resistance to flow increase as stenosis grows or radius of artery decreases. This referred to as 
Fahraeus-Lindquist effect in very thin tubes. The present results are therefore consistent with the 

observation of Haldar [5, 4, 15]. Fig. (3) shows the results for apparent viscosity for different 

values of stenosis shape parameter, stenosis length, stenosis size and yield stress. Apprent 
viscosity increases as stenosis size, stenosis length increases and yield stress increases and 

decreases as stenosis shape parameter increases and results are compared with [17]. It is clear that 

apparent viscosity increases as stenosis grows. But the same is not true in the absence of stenosis. 

In capillary flow, the viscosity of blood flow found to vary with the radius of the capillary. The 
development of stenosis accelerates the velocity of plasma between the cells. This in turn 

increases the concentration of red cell and viscosity of blood in stenotic region, therefore 

increases. Fig (4) shows the variation of wall shear stress (τ) with stenosis size for different values 
of stenosis length (L0/L). It is clear from the figure that the wall shear stress (τ) increases as 

stenosis size and stenosis length increases. 
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Fig 3. Variation of apparent viscosity with stenosis length. 

 

Fig 4. Variation of wall shear stress with stenosis size for different values of stenosis shape parameter 

 

Fig 5. Concentration profile for different values of stenosos size 

This result is consistent with result of Tandon et al. [15]. Fig (5) represents the effects of retention 

parameter (N) on concentration in blood flow capillary region. Increasing values of retention 
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parameter described the increase in retention of solute within the blood flow in the capillary 
region. The value of retention parameter (N=1) implies the complete retention. No solute or fluid 

diffuses and as retention parameter decreases from 1 to 0.4 more solute diffuses, which in turns, 

decreases the solute concentration in the capillary region. The variation of the values of retention 

parameter in the stenotic region may also be associated with the type of plaques deposited on the 
walls: calcified, fibrous or fatty plaque.     

5. CONCLUDING REMARKS 

The present study incorporates the more realistic representation for blood in small diameter blood 

vessels and simultaneous dispersion of solute in capillary in normal and stenotic depending on 

various parameters including retention parameter. Herschel-Bulkely model appears to be realistic 

in the sense that the equations are fairly closely to the blood flow and the central core region is 
easily represented and one more parameter index behavior (non-Newtonian nature of this fluid) is 

given in the model. The results are more encouraging and correlating well with the experimental 

observation that deeper region cells are deprived of the nutrients in the stenotic region. More 
experimental results are required for further development from clinical point of view.     
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