

Validity of the Criterion pKa = pH at the Half Equivalence Point for the Potentiometric Evaluation of the Ionization Constant of a Monoprotic Acid

Julia Martín^{1*}, Laura Argeme-Caro², Agustin G. Asuero²

¹Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville. E–41011 Seville, Spain

²Department of Analytical Chemistry, Faculty of Pharmacy, University of Seville, E-41012 Seville, Spain

*Corresponding Author: Julia Martín, Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville. E–41011 Seville, Spain

Abstract: The aim of this paper is to draw attention to the conditions under which the potentiometric evaluation of the acidity constant of a monoprotic acid, HA, can be performed from the single half point titration curve. We may usually adopt the pH corresponding to this point, $pH_{T=0.5}$, as the pKa value avoiding the need of using a rigorous method of calculation involving the entire V-pH titration data. The complete and approximate theoretical relationships that allow making effective that choice have been derived. A literature search have been carried out in order to gather a number of papers in which the criterion pKa= $pH_{0.5}$ has been used. In spite of the frequency with which this criterion is applied, it is only valid in favourable cases. A number of practical cases are included for study.

Keywords: Ionization constant; Half equivalence point; Potentiometric Measurements; Monoprotic acid

1. INTRODUCTION

The location of inflection points in S-shaped titration curves is a recurrent topic in analytical chemistry, and some recent papers [1, 2] have been published on this respect. The basic papers concerning the location of inflexion points of weak acid-strong basic titrations date [3-5] from the 1960's. Meites et al. [3, 4] include the dilution in their treatment thus arriving at conclusions different from those previously stated by Roller [6-8]. The equivalence versus inflexion points has been the subject of a paper from Stokes [9]. On the other hand Fournaise and Petitfaux [10] have also studied the limits to the use of inflection points as points of equivalence in the treatment of acid-base titration data.

A number of papers (Table 1) adopt as criterion for the calculation of acidity constants that the pKa value coincides with the pH corresponding to the half point titration, T(fraction titrated)=0.5, the ionic strength being fixed. This practice is extended, but some limitations on its use are apparent. An approximation to this topic is made in this paper following the Meites et al guidelines [3, 4] with the purpose of bringing some light to the subject but fleeing from complex mathematical treatments. Some practical cases have been tackled.

Comment	Ref.		
Study of the X-ray structure of an anion complexed by a HBD receptor at the half-equivalence point.	[13]		
Study of the deprotonation at the half-equivalence point of (thio)amido-benzimidazoles in the	[14]		
presence of anions.			
Book including 35 advanced chemistry experiments designed for use with Vernier data-collection	[15]		
technology.			
Evaluation of thiol Raman activities and pKa values using internally referenced raman-based pH			
titration.			
Investigation to identify and assess the factors causing systematic errors in the degree of	[17]		
deacetylation obtained from pH-potentiometric titrations.			
A challenge to the readers in order to prove that the iconic $pKa = pH_{1/2}$ is just a simplification of a	[18]		
more complex equation			

Table1. Selected papers in which the criterion pKa=pHT=1/2 (half titration) is applied

Validity of the Criterion pKa = pH at the Half Equivalence Point for the Potentiometric Evaluation of the Ionization Constant of a Monoprotic Acid

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[5]
[4]
[3]
[33]

1.1. Theory

Basic Relationships

The equilibrium of acid dissociation of a weak monoprotic acid is given by

$$HA \rightleftharpoons H^+ + A^-$$

being the corresponding mixed (apparent) acidity constant at an ionic strength (I) fixed

$$K_{a} = \frac{\left(H^{+}\right)\left[A^{-}\right]}{\left[HA\right]} \tag{1}$$

where parenthesis indicate activities and brackets concentrations. In titrating an initial volume V_0 of a solution of HA of concentration C_A with a volume of a solution of strong monoprotic base, BOH, of concentration C_B we have

$$C_{A} \frac{V_{0}}{V_{0} + V} = \left[HA \right] + \left[A^{-} \right]$$
⁽²⁾

$$\begin{bmatrix} A^{-} \end{bmatrix} + \begin{bmatrix} OH^{-} \end{bmatrix} = \begin{bmatrix} B^{+} \end{bmatrix} + \begin{bmatrix} H^{+} \end{bmatrix} = C_{B} \frac{V}{V_{0} + V} + \begin{bmatrix} H^{+} \end{bmatrix}$$
(3)

for the mass balance and the electroneutrality rule, respectively. Then

$$\begin{bmatrix} A^{-} \end{bmatrix} = C_{B} \frac{V}{V_{0} + V} + \Delta$$
⁽⁴⁾

where

Validity of the Criterion pKa = pH at the Half Equivalence Point for the Potentiometric Evaluation of the Ionization Constant of a Monoprotic Acid

$$\Delta = \left[H^{+}\right] - \left[OH^{-}\right] = \frac{\left(H^{+}\right)}{\gamma_{H^{+}}} - \frac{\left(OH^{-}\right)}{\gamma_{OH^{-}}} = \frac{\left(H^{+}\right)}{\gamma_{H^{+}}} - \frac{K_{w}^{T}}{\left(H^{+}\right)\gamma_{OH^{-}}}$$

$$\tag{5}$$

where $\gamma_{\rm H}$ and $\gamma_{\rm OH}$ are the activity factors of hydrogen and hydroxide ion, respectively, which may be evaluated [11] from Debye and Hückel.

By combining Eqns. (1), (2) and (4) we get

$$K_{a} = \left(H^{+}\right) \frac{T + \frac{\Delta}{C_{A} \frac{V_{0}}{V_{0} + V}}}{1 - T - \frac{\Delta}{C_{A} \frac{V_{0}}{V_{0} + V}}}$$

$$(6)$$

where T is the titrated fraction

$$T = \frac{C_B V}{C_A V_0}$$
⁽⁷⁾

In those cases in which the second term of the numerator of the right hand of Eqn. (6) can be despised against T and (1-T), we obtain

$$K_a \simeq \left(H^+\right) \frac{T}{1-T} \tag{8}$$

and then at the half titration, when T=0.5 we get

$$pK_a \approx pH_{T=0.5} \tag{9}$$

Note that [12]

$$\tilde{n} = \frac{C_H - \left[H^+\right]}{C_A \frac{V_0}{V_0 + V}} = \frac{\left[HA\right]}{C_A \frac{V_0}{V_0 + V}} = f = 1 - T - \frac{\Delta}{C_A \frac{V_0}{V_0 + V}}$$

$$(10)$$

and then

$$K_a = \left(H^+\right) \frac{1 - \tilde{n}}{\tilde{n}} \tag{11}$$

and thus it is always true that

$$pK_a = pH_{n=0.5} \tag{12}$$

Derivation of the Relationship Between the Titrated Fraction When Ph=Pka as a Function of the Concentration and the Acidity Constant

From Eqn. (6) by simple algebra we get

$$-\left[H^{+}\right]^{3} - \left(K_{a} + T C_{A} \frac{V_{0}}{V_{0} + V}\right) \left[H^{+}\right]^{2} + \left((1 - T)C_{A}K_{a} \frac{V_{0}}{V_{0} + V} + K_{w}\right) \left[H^{+}\right] + K_{a}K_{w} = 0$$
(13)

and taking into account that

Validity of the Criterion pKa = pH at the Half Equivalence Point for the Potentiometric Evaluation of the **Ionization Constant of a Monoprotic Acid**

$$y = \begin{bmatrix} H^+ \\ K \end{bmatrix}$$

$$r = \frac{C_A}{C_p}$$
(14)

$$\frac{V_0}{V_0 + V} = \frac{1}{1 + \frac{V}{V_0}} = \frac{1}{1 + T\frac{C_A}{C_B}} = \frac{1}{1 + Tr}$$
(15)

we get

$$y^{3} + \left(1 + \frac{C_{\mathcal{A}}}{K_{a}} \left(\frac{T}{1 + rT}\right)\right) y^{2} - \left(\left(\frac{1 - T}{1 + rT}\right) \frac{C_{\mathcal{A}}}{K_{a}} + \frac{K_{w}}{K_{a}^{2}}\right) y - \frac{K_{w}}{K_{a}^{2}} = 0$$
(17)

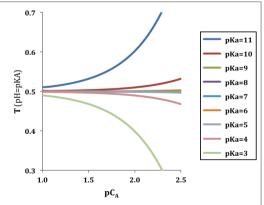
From Eqn. (14), y=1, when

$$pH_{y-1} = pK_{\alpha} \tag{18}$$

making thus possible to evaluate the value of T at this point

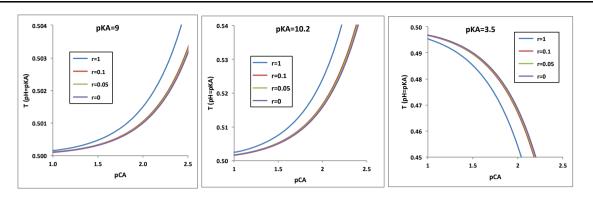
 C_R

$$2 + \frac{C_{\mathcal{A}}}{K_{a} \left(1 + r T_{y-1}\right)} \left(2 T_{y-1} - 1\right) - 2 \frac{K_{w}}{K_{a}^{2}} = 0$$
⁽¹⁹⁾


which on rearrangement gives

$$T_{y=1} = \frac{0.5 + \frac{K_a}{C_A} \left(\frac{K_w}{K_a^2} - 1\right)}{1 + r \frac{K_a}{C_A} \left(1 - \frac{K_w}{K_a^2}\right)}$$

(20)


(16)

Thus, the variation of the value of T when the pH = pKa (y=1) as a function of the concentration (pCA = $-\log CA$), at different pKa values between 3 and 11 is shown in Fig. 1, for values of r = CA / CACB = 1. The variation of the value of T (for y=1) as a function of concentration, for values of pKa = 9, 10.2 and 3.5, and different values of r (1, 0.1, 0.05 and 0) is shown in Fig. 2. In Fig. 3 the variation of the values of T (when y=1) as a function of pCA is observed for pKa values between 5.0 and 4.0. Finally, Fig. 4 shows the variation of the values of T (pH = pKa) as a function of pKa for pCA values between 1.0 and 5.0. A look at the figures reveals that the mistake made taken T as 0.5 is null when the pKa = pKw/2 and increases as the pKa distances from pKw/2 and decreases the concentration CA and increases the ratio r = CA / CB.

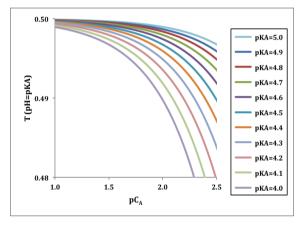


Figure1. Variation of the value of T when the pH = pKa (y=1) as a function of the concentration (pCA = -log C_A), at different pKa values.

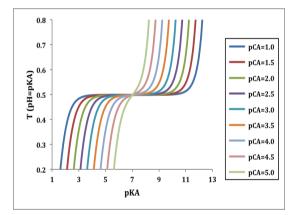

Validity of the Criterion pKa = pH at the Half Equivalence Point for the Potentiometric Evaluation of the **Ionization Constant of a Monoprotic Acid**

Figure2. Variation of the value of T (for y=1) as a function of concentration and different values of r; pKa = 9(left), 10.2 (middle) and 3.5 (right).

Figure3. Variation of the values of T (when y=1) as a function of pC_A ; pKa values between 5.0 and 4.0

Figure4. Variation of the values of T(pH = pKa) as a function of pKa for pC_A values between 1.0 and 5.0.

Bilogaritmic Method for the Evaluation of the Acidity Constants

From Eqn. (11) we have

$$\log\binom{\tilde{n}}{1-\tilde{n}} = pK_a - pH$$
(21)

where the value of \tilde{n} may be calculated at any point of titration by applying Eqn. (10).

Plotting the left hand of Eqn. (21) against pH a straight line ($y = a_0 + a_1 x$) of slope minus unity and intercept equal to pKa is obtained, from [34, 35] the least squares method. The pKa value is obtained at the point which cut the abscissa (pH) axis (because the experimental slope differs from the theoretical slope of minus unity), and then

$$pK_a = -\frac{a_0}{a_1} \tag{22}$$

International Journal of Advanced Research in Chemical Science (IJARCS)

Page | 10

Error Analysis

Note from Eqn. (22) that

$$pK_a = f(a_0, a_1) \tag{23}$$

and then by applying the random error propagation law [36, 37]

$$s_{pK_{a}}^{2} = \left(\frac{\partial pK_{a}}{\partial a_{0}}\right)s_{0}^{2} + \left(\frac{\partial pK_{a}}{\partial a_{1}}\right)s_{1}^{2} + 2\left(\frac{\partial pK_{a}}{\partial a_{0}}\right)\left(\frac{\partial pK_{a}}{\partial a_{1}}\right)\operatorname{cov}\left(a_{0}, a_{1}\right)$$
(24)

and then taking into account Eqns. (22) and (24) by simple algebra we obtain

$$s_{pK_{a}} = \sqrt{\frac{1}{a_{0}^{2}}s_{a_{0}}^{2} + \frac{a_{0}^{2}}{a_{1}^{4}}s_{a_{1}}^{2} - 2\frac{a_{0}}{a_{1}^{3}}\operatorname{cov}(a_{0}, a_{1})}$$
(25)

The Excel function LINNEST [38] gives the parameters of the straight line (a_0 and a_1) and their corresponding standard deviations, and the standard deviation of the regression line, $s_{y/x}$. The covariance function may then easily estimated from

$$\operatorname{cov}(a_{0},a_{1}) = -\overline{x} \frac{s_{y/x}^{2}}{S_{xx}} = -\overline{x} s_{a_{1}}^{2}$$
(26)

Mixed (Apparent) Acidity Constant and Thermodynamic Acidity Constant

The relationships between the thermodynamic pK_a^T and the mixed or apparent pK_a is given by

$$K_a^T = \frac{\left(H^+\right)\left(A^-\right)}{\left(HA\right)} = K_a \frac{\gamma_0}{\gamma_1}$$
⁽²⁷⁾

$$pK_a^T = pK_a - \log\frac{\gamma_0}{\gamma_1} \simeq pK_a - \log\gamma_0$$
⁽²⁸⁾

where γ_0 and γ_1 are the activity factors of the species A and HA, respectively $(H_jA) = \gamma_j [HA]$; the value of the γ_1 of the neutral species is assumed to be the unity.

Working at varying ionic strength we get

$$\log\left(\frac{\tilde{n}}{1-\tilde{n}}\right) - \log\gamma_0 = pK_a^T - pH$$
⁽²⁹⁾

Note that in those cases in which Eqn. (10) may be simplified to give $\tilde{n}=1-T$ then at the half titration (*T*=0.5) follows

$$pK_{a} \simeq pK_{a}^{T} + \log \gamma_{0(T=0.5)} \simeq pH_{T=0.5}$$
(30)

The activity coefficient of an ion of z charge is given by

$$-\log \gamma_i = \frac{A z^2 \sqrt{I}}{1 + B a_i \sqrt{I}}$$
(31)

where A and B are constants [11] depending of the dielectric constant and temperature of solvent and a_i is the average distance of approximation of ions

The activity factor is depending of the ionic strength of the medium

$$I = \frac{1}{2} \sum C_i z_i^2 = \frac{1}{2} \left(\begin{bmatrix} B^+ \end{bmatrix} + \begin{bmatrix} H^+ \end{bmatrix} + \begin{bmatrix} A^- \end{bmatrix} + \begin{bmatrix} OH^- \end{bmatrix} \right)$$
(32)

International Journal of Advanced Research in Chemical Science (IJARCS)

Page | 11

where C_i are the concentration of the ions involved and z_i its charge. By combining Eqns. (3) and (32) we get

$$I = \begin{bmatrix} B^+ \end{bmatrix} + \begin{bmatrix} H^+ \end{bmatrix} = \frac{C_B V}{V_0 + V} + \frac{\left(H^+\right)}{\gamma_{H^+}}$$
(33)

Note that for either a cationic acid of the type HA^+ (i.e. ammonium ion, NH_4^+) or a neutral monoacid base B (i.e. TRIS which on protonation fives the species HB^+), the relationship between the thermodynamic and apparent constant is given by

$$pK_a^T = pK_a + \log\gamma_1 \tag{34}$$

being now γ_1 the activity coefficient of the species positively charged (i.e HA⁺). The expression applicable now for the potentiometric evaluation of the acidity constants is

$$\log\left(\frac{\tilde{n}}{1-\tilde{n}}\right) - \log\gamma_1 = pH - pK_a^T$$
(35)

and we get then

$$pK_{a} = pK_{a}^{T} - \log\gamma_{1(T=0.5)} = pH_{T=0.5}$$
(36)

2. MATERIAL AND METHODS

2.1. Reagents

Acetic acid (CH₃COOH) M=60 g/mol (Merck> 99.5%, 1.049 g/mL); Alanine (NH₂CH₂CH₂COOH) M=89.09 g/mol (Merck, analytical grade); Chloroacetic acid (ClCH₂COOH) M=94.5 g/mol (Merck> 99.5%); Tris(hydroxymethyl)-aminomethane (TRIS) (HOCH₂)₃CNH₂ M=121.14 g/mol (Merck> 99.5%); Sodium chloride (NaCl) M=58.44 g/mol (Merck, analytical grade); 1M hydrochloric acid (HCl) (Merck, analytical grade); Potassium hydroxide (KOH) 1M (Merck, analytical grade); Water for ACS analysis (Panreac).

2.2. Instruments

Analytical balance (Metler AE200) (4 decimals), pH-meter Crison GPL 21 Model (3 decimals), burette of 5 mL (Brand) (\pm 0.01 at 20 °C), burette of 2 mL (Brand) (\pm 0.01 at 20 °C).

2.3. Titrations

Potentiometric Titration of Acid with Potassium Hydroxide (0.1 M) or Base with Hydrochloric Acid (0.1 M)

Fifty mL of 0.01 M or 0.001 M acid (chloroacetic acid, acetic acid, alanine) solution (see Table 2) is pipetted into a 100 mL beaker. Then the acid solution was titrated potentiometrically with potassium hydroxide solution 0.1 M (or 0.01 M) using the glass pH electrode and a burette of 5 mL (or 2 mL). At fixed I=0.1 (NaCl) ionic strength, 100 mL 0.005 M of acid solutions (and 0.1 M in NaCl) were titrated with potassium hydroxide 0.1 (and 0.1 M in NaCl). TRIS 0.01 M was also titrated with 0.1 M hydrochloric acid solution at varying ionic strength.

Compound	V_0	C _A	C _B	Ι	a_1	a_0	рКа ^т	pKa
CICH ₂ COOH	50	0.0103	0.1	var	-1.008	2.766	2.744 ± 0.006	I
	100	0.00515	0.1	0.1	-1.010	2.623		2.600±0.010
	50	0.00098	0.01	var	-1.003	2.756	2.746 ± 0.030	
CH ₃ COOH	50	0.01	0.1	var	-1.023	4.841	4.729 ±0.004	
	100	0.005	0.1	0.1	-0.998	4.517		4.525±0.004
NH ₂ CH ₂ CH ₂ COOH	50	0.01	0.1	var	-0.891	9.086	10.202±0.003	
	100	0.005	0.1	0.1	-0.916	9.163		10.007±0.005
Compound	V_0	C _B	CA	Ι	a ₁	a ₀	рКа ^т	pKa
(HOCH ₂) ₃ CNH ₂	50	0.010013	0.1	var	0.982	-8.039	8.190±0.005	

Table2. Evaluation of acidity constants of acidic compounds (bilogarithmic method)

3. RESULTS AND DISCUSSION

The experimental results obtained are summarized in Table 2. The thermodynamic acidity constants obtained for chloroacetic and acetic acid are similar to the values compiled by Shiels and Seybold [39] (pKa equals to 2.70 and 2.74, respectively). A good agreement is also observed between the value given by Albert and Serjeant [11] for TRIS, pKa=8.18, by the value obtained by us. On the other hand a pKa value of the order of 10.2 has been reported for β -alanine [40]. Figures 5 and 6 show the pKa graphical bilogaritmic method for chloroacetic acid 0.001 M and alanine 0.01 M, respectively, with the residual analysis [41] included. In Table 3 are compiled together with the pKa values obtained, the value of pH at the half titration (T=0.5), and both the experimental value of T when pH=pKa and the (approximate) theoretical value predicted. It can be seen that [3, 4, 42] the pH value a T (pH=pKa) is < 0.5 when pKa << 7, and T(pH=pKa) is >0.5 for pKa >> 7. That is, pH(T=0.5)> pKa in the range of acid pKa values, and pH(T=0.5)< pKa in the alkaline pKa range side.

Compound	С	Ι	рКа ^т	рКа	pH (T=0.5)	T (exp.)	T (theory)
						(pH=pKa)	(pH=pKa)
CICH ₂ COOH	0.01	var	2.744		2.946	0.324	0.269
	0.005	0.1		2.600	2.975	< 0	-0.001
	0.001	var	2.746		3.500	< 0	-0.460
CH ₃ COOH	0.01	var	4.729		4.712	0.510	0.500
	0.005	0.1		4.525	4.540	0.492	0.500
NH ₂ CH ₂ CH ₂ COOH	0.01	var	10.202		10.146	0.530	0.524
	0.005	0.1		10.007	9.979	0.517	0.530
(HOCH ₂) ₃ CNH ₂	0.01	var	8.190		8.207	0.510	0.500

Table3. *Comparison values among pKa, pH at T=0.5 and T at a pH=pKa*

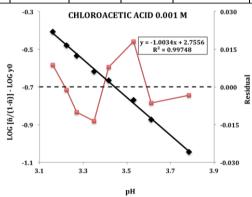


Figure5. Bilogarithmic method for the potentiometric evaluation of pKa of chloroacetic acid

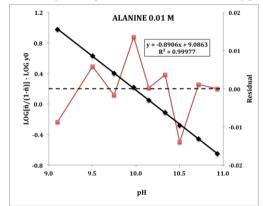


Figure6. Bilogarithmic method for the potentiometric evaluation of acidity constants of alanine

4. CONCLUSION

Therefore, the usual criterion of pKa = pH should be adopted with caution, since it is not applicable to very weak and highly diluted acids, or to medium strength and diluted acids. A look at Table 1 shows that this criterion is used with a certain frequency, having been applied to Raman, potentiometric, ion exchange, flow ratiometry, and liquid chromatographic among other measurements, although under

International Journal of Advanced Research in Chemical Science (IJARCS)

favourable conditions. Meija and Biseniek [18, 19] have also deal with this topic. However it is convenient to make as complete a use as possible [43] of the experimental data obtained. On this respect the use of the bilogarithmic method (Fig. 5 and 6) should be advocated.

REFERENCES

- [1] Michalowska-Kaczmarcyk A. M., Michalowski T., Asuero A. G., Inflection points on some S-shaped curves, J. Anal. Sci. Methods Instr. 4, 27-30 (2014).
- [2] Asuero A. G., Michalowski T., Comprehensive formulation of titration curves for complex acid-base system and its analytical implications, Crit. Rev. Anal. Chem. 41, 151-187 (2011).
- [3] Meites L., Goldman J. A., Theory of titration curves. Part I, The locations of inflection points on acid-base and related titration curves, Anal. Chim. Acta 29, 472-479 (1963).
- [4] Meites L., Goldman J. A., Theory of titration curves. Part III, The locations of points at which pH= pKa on potenciometric acid-base titration curve; end-point errors in titrations to predetermined pH values, Anal. Chim. Acta 30, 28–33 (1964).
- [5] Le Duigou Y., Calcul de la position du point final de la courbe de titration potentiométrique de l'acide borique, Technical Report EUR-2240.f, NSA-19-032057, European Atomic Energy Community, Gelel (Belgium). Central Nuclear Measurements Bureau, (1965).
- [6] Roller P. S., Theory of the end point in electrometric titration, J. Am. Chem. Soc. 50 (1), 1-8 (1928).
- [7] Roller P. S., Theory of the error of acid-base titration, J. Am. Chem. Soc. 54, 3485-3499 (1932).
- [8] Roller P. S., Theory of the error of acid-base titration, J. Am. Chem. Soc. 57, 98-99 (1935).
- [9] Stokes R. H., Equivalence point and inflexion points in acid-base titration curves, Australian J. Chem. 16 (5), 759-773 (1963).
- [10] Fournaise R., Petitfaux C., Limites à l'emploi des points d'inflexion comme points d'équivalence lors de l'exploitation des titrages acido-basiques. Intérêt de l'affinement multiparamétrique pour une analyse précise des données potentiométriques, Analusis 15 (1), 33-42 (1987).
- [11] Albert A., Serjeant E.P.J., The Determination of Ionization Constants. A Laboratory Manual, 3th ed., Chapman and Hall: New York (1984).
- [12] Asuero A.G., Buffer capacity of a polyprotic acid: first derivative of the buffer capacity and pKa values of single and overlapping equilibria, Crit. Rev. Anal. Chem. 37 (4), 269-301 (2007).
- [13] Koeller S., Lescure M. H., Davies C., Desvergne J. P., Massip S., Bibal B., Hydrogen-bonding amidoindoles in the presence of anions: an X-ray structure of a receptor at the acid–base half-equivalence that binds an anion, World Eur. J. Org. Chem. 1, 5627–5631 (2017).
- [14] Koeller S., Lescure M. H., Davies C., Desvergne J. P., Massip S., Bibal B., Insight into the deprotonation at the half equivalence point of (thio)amido-benzimidazoles in the presence of anions, Org. Biomol. Chem. 15, 7263-7266 (2017).
- [15] Randall J., Advanced Chemistry with Vernier, Fourth Ed., Vernier, Chem A (2017). ISBN 978-1-929075-83-6.
- [16] Suwandaratne N., Hu J., Siriwardana K., Gadogbe M., Zhang D., Evaluation of thiol Raman activities and pKa values using internally referenced Raman-based pH titration, Anal. Chem. 88, 3624–3631 (2016).
- [17] Balázs N., Sipos P., Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan, Carbohydr. Res. 342, 124–130 (2007).
- [18] Meija J., Bisenieks J., Half-titration challenge, Anal. Bioanal. Chem. 388, 993–994 (2007).
- [19] Meija J., Bisenieks J., Solution to half-titration challenge, Anal. Bioanal. Chem. 389, 1301–1302 (2007).
- [20] Tanaka H., Tachibana T., Determination of acid/base dissociation constants based on a rapid detection of the half equivalence point by feedback-based flow ratiometry, Anal. Sci. 20, 979–981 (2004).
- [21] Tanaka H., Kiriko K., Tachibana T., Chuman H., Dasgupta P. K., Determination of acid dissociation constants based on continuous titration by feedback-based flow ratiometry, Talanta 64, 1169–1174 (2004).
- [22] Manderscheid M., Eichinger T., Determination of pKa values by liquid chromatography, J. Chromatogr. Sci. 41, 323–326 (2003).
- [23] Tanaka H., Oda R., Tachibana T., Dasgupta P. K., Determination of dissociation constants of weak acids by feedback-based flow ratiometry, Anal. Chim. Acta 499, 199–204 (2003).
- [24] Carlsson K., Karlberg B., Micro-volume flow titration and screening the dissociation constants (pKa) of weak acids, Anal. Chim. Acta 434, 149-156 (2001).

- [25] V. S. Soldatov, A simple method for the determination of the acidity parameters of ion exchangers, React. Func. Pol. 46, 55–58 (2000).
- [26] Barnum D., Predicting acid-base titration curves without calculations, J. Chem. Educ. 76 (7), 938–942 (1999).
- [27] Soldatov V. S., Potentiometric titration of ion exchangers, React. Func. Pol. 38 (6), 73–112 (1998).
- [28] Kildahl N., A simpler approach to "apparent" pKa's J. Chem. Educ. 73 (6), 598 (1996).
- [29] Cawley J. J., The determination of "apparent" pKa's Part II. An experiment using very weak acids (pKa's > 11.4), J. Chem. Educ. 72 (1), 88–90 (1995).
- [30] Cawley J. J., The Determination of "Apparent" pKa's, An Experiment for Liberal Arts or Science Students. J. Chem. Educ. 70 (7), 596–598 (1993).
- [31] Fernandes Diniz J. M. B., Herrington T. M., pKa determination of weak acids over a large pH range, J. Chem. Eng. Data, 38 (1), 109–111 (1993).
- [32] Stephens S. J., Joncich M. J., Determination of pKa using the half-volume method: A laboratory experiment, J. Chem. Educ. 54 (11), 711 (1977).
- [33] Gage J. C., The potenciometric titration of weak acids and bases in dilute aqueous solution, XVth International Congress on Pure and Applied Chemistry, 82, 219–228 (1956).
- [34] Asuero A. G., González A. G., Some observations on fitting a straight line to data, Microchem. J. 40 (2), 216-225 (1989).
- [35] Sayago A., Asuero A. G., Fitting straight lines with replicate observations by linear regression: Part II. Testing for homogeneity of variances, Crit. Rev. Anal. Chem. 34 (3-4), 133-146 (2004).
- [36] Asuero A. G., Gonzalez A. G., de Pablos F., Gomez-Ariza J. L., Determination of the optimum working range in spectrophotometric procedures, Talanta 35 (7), 531-537 (1988).
- [37] Martin J., Morejon M. J. B., Asuero A. G., A bilogarithmic hyperbolic sine procedure for the simultaneous calculation of successive formation constants of two step overlapping acid-base equilibria from potentiometric measurements, Int. J. Advanced Res. Chem. Sci. Accepted.
- [38] Liengme B. V., A Guide to Microsoft Excel 2013 for Scientists and Engineers, Elsevier: Amsterdam (2015).
- [39] Shields G. C., Seybold P. G., Computational Approaches for the Prediction of pKa Values, CRC Press: Boca Raton, FL (2014); p. 89.
- [40] Martin J., Ruiz D. B., Asuero A. G., Determination of the end point in potentiometric titrations: Gran and Schwartz methods, J. Lab. Chem. Educ. 6 (4), 77-90 (2018).
- [41] Martin J., de Adana D. D. R., Asuero A. G., Fitting Models to Data: Residual Analysis, a Primer, In Uncertainty Quantification and Model Calibration, J. P. Hessling (ed.). IntechOpen, Chap. 7, (2017); pp. 133-173. DOI: 10.5772/68049.
- [42] Michalowski T., Pilarski B., Asuero A. G., Dobkowska A., A new sensitive method of dissociation constants determination based on the isohydric solutions principle, Talanta 82, 1965-1973 (2010).
- [43] Rossotti H., The Study of Ionic Equilibria, an Introduction, Longman: London (1978).

Copyright: © 2018 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

International Journal of Advanced Research in Chemical Science (IJARCS)

Citation: Julia Martín et al. " Validity of the Criterion pKa = pH at the Half Equivalence Point for the Potentiometric Evaluation of the Ionization Constant of a Monoprotic Acid" International Journal of Advan ced Research in Chemical Science (IJARCS), vol. 5, no. 12, pp. 6-15, 2018. http://dx.doi.org/10.20431/2349-0403.0512002