Synthesis of Composite Oxides Derived from Zn-Ni-Al Layered Double Hydroxides and its Use in Photocatalytic Reduction of CO₂

Li ZHANG, Qing-man LIANG, Jian-hui YAN, Min-jie ZHOU

College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang China

Abstract: ZnO/NiO/ZnAl₂O₄ mixed metal oxides were synthesized through a facile and environment-benign route in which solutions of appropriate amounts of metal salts were mixed with solutions of sodium hydroxide and sodium carbonate to obtain a series of hydrotalcite-like precursors. The precursors in the form of ZnNiAl layered double hydroxides (LDHs) were subject to calcination at suitable temperatures for the generation of composite oxides. The as-obtained samples were characterized by XRD, SEM, TEM, EDS, BET and UV-Vis DRS techniques. The results indicate that there is the generation of well-crystalline ternary ZnO/NiO/ZnAl₂O₄ photocatalysts high in surface area. The photocatalytic activity of the as-obtained materials was evaluated in the photocatalytic reduction of CO₂ under simulated sunlight irradiation. The effects of calcination temperature, amount of sacrificial agent and reaction time on the photocatalytic activity of the samples were investigated. The results indicated that ZnNiAl-LDH precursor calcined at 500 °C show the highest photocatalytic activity, the maximum yield of 2680 μmol·g⁻¹ methanol within 6 h was obtained with 0.04 mol of NaOH and Na₂SO₄, respectively. The mechanism of CO₂ photocatalytic reduction over ZnO/NiO/ZnAl₂O₄ was discussed.

Keywords: Layered double hydroxides; ZnO/NiO/ZnAl₂O₄; Photocatalytic reduction; CO₂

1. INTRODUCTION

As a class of inorganic materials with special layered structure and interesting properties, layered double hydroxides (LDHs) photocatalysts have aroused more and more attention. Interlayer water molecules of LDH photocatalysts would be lost after calcination, and then the composite oxides with high specific surface area could be formed. Generally, the LDH photocatalysts are composed of amphoteric metal ions, such as Al³⁺-Zn²⁺ ions and so on [1,2]. Mesh-like mesoporous spinel compounds with large specific surface area can be obtained via the alkaline dissolution of LDH after calcination. Spinel amphoteric metal oxides can exhibit porous structure and high specific surface area, which is mainly attributed to the amphoteric materials. On the one hand, the amphoteric materials can play the role of dispersion and barrier, which can effectively inhibit the growth of spinel nanoparticles. On the other hand, the mesoporous structure can be obtained during the selective dissolution [3]. Currently, LDH derivatives mainly consisted of two or three metal composite oxides. Binary [4], ternary [5] or quaternary [6] metal ionic LDH compounds can be formed via the interactions among divalent or trivalent metal ions. In the ternary LDH photocatalysts, the ternary metal ions are able to enter into the layers of the hydrotalcite by several ways, and then trivalent complex oxide could be obtained after calcination [7,8]. In addition, quaternary LDH composite can also be obtained through the metal oxide combination or noble metal deposition [9]. It has been reported that the nickel-based compound as co-catalyst is effective in improving the photocatalytic activity [10,11]. Gabriela Carja and coworkers prepared Ni/MgAl-LDH and Ni/MgFeAl-LDH photocatalysts by intercalating exchange method, which displayed high photocatalyst activity in degrading the Drimaren industrial dyes [12]. Kentaro Teramura group prepared fluorinated Ni/Al binary LDHs via co-precipitation approach, which could effectively converse CO₂ in water solution system under ultraviolet light [13]. Zn-Ni-Al complexes
were also prepared by co-precipitation method, which were used to reduce CO₂ and degrade methyl orange, and all of them showed remarkable properties \[14, 15\].

In this work, zinc, nickel, aluminum nitrate were used as the main raw materials to prepare the Zn-Ni-Al-LDH by hydrothermal method. The mixed oxides with high specific surface were obtained by the thermal treatment of LDH materials. The photocatalytic activity was evaluated by photocatalytic reduction of CO₂, and the factors influencing the photocatalytic activity were explored, such as calcination temperature, sacrifice dosage and reaction time.

2. EXPERIMENTAL

2.1. Sample Preparation

The hydrotalcite containing Zn-Ni-Al with different cationic ratios were prepared by hydrothermal method according to the reference \[16\]. A mixed metal nitrates with specific cationic molar ratio (Zn\(^{2+}/\text{Ni}^{2+}/\text{Al}^{3+}=2:1:1\) was dissolved in deionized water to produce a solution with a total cationic concentration of 1 M (solution A); and NaOH and Na₂CO₃ were dissolved in deionized water to form a mixed alkali solution (solution B). The concentrations of the alkali were related to those of the metal ions as follows: \([\text{CO}_3^{2-}] = 1.8 \times [\text{Al}^{3+}], [\text{OH}^-] = 1.4 \times ([\text{Ni}^{2+}] + [\text{Zn}^{2+}] + [\text{Al}^{3+}]).\) The solution B was dropped at a rate of 0.05mL min\(^{-1}\) into solution A at 80 °C while stirring at a rate of 600 rpm. During the synthesis the pH value was kept at 9.0. The resulting slurry was aged for 1 h at 80°C, transferred into a Teflon reaction kettle and incubated for 10 h at 150°C. The final precipitates were recuperated by filtration, washed several times with deionized water and dried at 80 °C overnight. And then the resulting Zn-Ni-Al ternary LDH precursors were fully milled and calcined at different temperatures (400, 500, 600, and 700 °C).

2.2. Characterization

Powder X-ray diffraction data (XRD) were collected on a Rigaku D/max 2550 diffractometer under the following conditions: 40 kV, 300 mA, graphite-filtered Cu Kα radiation (λ = 0.15406 nm). The powder samples were step-scanned in steps of 0.04º (2θ) using a count time of 10 s /step. Scanning electron microscopy (SEM) and TEM images were recorded on Nova Nano230 and Tecna G220. The specific surface area determination and pore volume and size analysis were performed by BET (ASAP, 2020, HD88, America) method. UV-vis absorbance spectra were recorded on a LS55 Perkin Elmer spectrometer (America). And the products of photocatalytic reduction were tested by gas chromatograph (GC-2010, Japan).

2.3. Photocatalytic Activity

The CO₂ reduction reaction was carried out in a quartz catalytic reactor (Xe lamp, 300 W). The photocatalyst (1.0 g L\(^{-1}\)) was dispersed in deionized water in the reactor. The CO₂ was flowed into the reacted mixture at a flow rate of 200 mL min\(^{-1}\) at 25 °C. Meanwhile, different amounts of NaOH and anhydrous Na₂SO₃, as a sacrificial agent, were added and continuously stirred for 30 min. The reductive reaction started after turning on the light source. Subsequently, the reaction liquid was regularly extracted and post-processed while the content of methanol in the filtrate was detected by gas chromatograph.

3. RESULTS AND DISCUSSION

3.1. Characterization

3.1.1. XRD Analysis

Fig. 1 indicates the XRD patterns of ZnNiAl-LDH (Zn\(^{2+}/\text{Ni}^{2+}/\text{Al}^{3+}=2:1:1\) precursors calcined at different temperature. The XRD patterns exhibit the characteristic peaks of layered double hydroxides with the basal peaks for (003), (006) and (009/012) planes and the non-basal peaks for (110) and (113) planes, which illustrate the good symmetry of LDHs crystal layer structure \[17, 18\]. Additional Zn(OH)₂ phase is present in the samples, showing intense and sharp peaks for (009) and (012) planes.
Synthesis of Composite Oxides Derived from Zn-Ni-Al Layered Double Hydroxides and its Use in Photocatalytic Reduction of CO$_2$

The reflections corresponding to LDH have completely disappeared and new reflections appear after calcination at 400-700 °C. The reflections become sharp with the increasing calcination temperature. The reflections at $2\theta = 31.8^\circ$, 34.4°, 36.2°, 47.6° and 56.6° can be indexed to hexagonal wurtzite structured ZnO, which is in good agreement with the literature values (JCPDS 36-1451). In addition, the peak centering at $2\theta = 43.3^\circ$ and 62.8° in the XRD pattern can be associated with the NiO phase (JCPDS 36-1451). When calcined temperature was further increased, the reaction between oxides occurred and generated the spinel structure ZnAl$_2$O$_4$.

When calcined temperature was increased to 500 °C, the reflections at $2\theta = 36.9^\circ$ can be indexed to ZnAl$_2$O$_4$ (JCPDS 05-0669). This may be ascribed to homogeneous distribution of metal cations within a single LDH precursor, which facilitates the formation of well-dispersed and crystalline mixed metal oxides through a topotactic process upon calcinations. When calcined temperature was further raised, the diffraction peak intensity is enhanced, indicating the increased crystallinity. While no diffraction peak of NiAl$_2$O$_4$ phase was found in all samples. The content of ZnO is higher than NiO in the mixture. Compared with NiAl$_2$O$_4$, ZnAl$_2$O$_4$ is easier to produce at relatively low temperatures. No characteristic reflections corresponding to Al$_2$O$_3$ phase can be observed, suggestive of the presence of amorphous Al$_2$O$_3$.

![Fig1: XRD patterns of Zn-Ni-Al-LDH and Zn-Ni-Al-LDHs calcined at different temperatures](image)

3.1.2. SEM and TEM Analysis

The SEM images of ZnNiAl-LDH before and after calcination are presented in Fig. 2. It can be seen that the precursor is made up of agglomerated platelet-like particles, and the platelets have a side length of 20-50 nm (Fig. 2a). After calcination at 500 °C, there is the collapse of LDH structure and the platelets become irregular spherical particles about 20 nm (Fig. 2b).

![Fig2: SEM images of (a) Zn-Ni-Al-LDH and (b) Zn-Ni-Al-LDH calcined at 500 °C](image)
The TEM and HRTEM images of ZnNiAl-LDH before and after calcination are presented in Fig. 3. As shown in Fig. 3a, ZnNiAl-LDH possesses uniform distribution of LDH particles with some irregularly hexagon particles. In Fig. 3b, the average particle size of ZnNiAl-LDH decreases upon calcination at 500 °C to the formation of metal oxide cluster. The HRTEM image and EDX pattern of ZnNiAl-LDH calcination at 500 °C are presented in Figs. 3(c) and (d). The spacing of 0.281 nm and 0.237 nm depict the lattice-resolved (100) and (200) crystalline plane of ZnO and NiO phase, respectively, and the spacing value of 0.284 nm corresponds to the (220) facet of ZnAl₂O₄ phase (Fig. 3c). EDS measurement confirmed the presence of Zn, Ni, Al and O in the calcined sample (Fig. 3d).

![TEM images of Zn-Ni-Al-LDH before and after calcination.](image)

Fig3. TEM images of (a) Zn-Ni-Al-LDH and (b) Zn-Ni-Al-LDH calcined at 500 °C along with (c) HRTEM image and (d) EDS measurement of Zn-Ni-Al-LDH calcined at 500 °C

3.1.3. UV-Vis DRS Analysis

The UV–visible absorption spectra of ZnNiAl-LDH before and after calcination are depicted in Fig. 4a. The E_g values were also estimated based on the Kubelka-Munk equation \[[21] \]. Upon calcination, ZnO, NiO and ZnAl₂O₄ composite oxides (Fig. 1 XRD shown) coupled to each other to form a heterojunction (Fig. 3c HRTEM) that could reduce the bandgap energy and improve the light quantum efficiency while the absorption becomes intense and the absorption peak generates bathochromic shift \[[16] \].

\[
F(R_\infty) = \left(\frac{1 - R_\infty}{2R_\infty} \right) = \frac{\alpha}{S}
\]

α is the absorption coefficient, S is the scattering coefficient, R_∞ is the diffuse reflectance.

The band gap of Zn-Ni-Al-LDHs is 5.45 eV, that is to say, hydrotalcite does not belong to the semiconductor material without light catalytic ability. Meanwhile the calcined sample has certain absorption in the visible area for the band gap of 3.1 eV.
Synthesis of Composite Oxides Derived from Zn-Ni-Al Layered Double Hydroxides and its Use in Photocatalytic Reduction of CO₂

Fig 4. UV-Vis diffuse reflectance spectra (a) and band-gap energy (b) of (1) Zn-Ni-Al-LDHs and (2) Zn-Ni-Al-LDHs calcined at 500 °C

3.1.4. BET Surface Area and Pore Size Analysis

Table 1 shows the specific surface area and pore structure parameters of Zn-Ni-Al-LDHs precursor and calcined samples (400, 500 and 600 °C). The specific surface area of the hydrotalcite precursor is about 73.8 m² • g⁻¹, and the average pore size is up to 15.9 nm due to the pile layered structure, but the total pore volume is small, only 0.29 cm³ • g⁻¹, which shows the moderate number of holes in the sample. The specific surface area and pore volume of the calcined samples were increased obviously. Especially, the sample calcined at 500 °C has the specific surface area of 153.5 m² • g⁻¹ that is 2.1 times high than unburned precursor. Such pore structure is more conducive to the photocatalytic reduction of CO₂ [22]. In parallel, calcination temperature was further increased, which caused the bonding among the oxide, and the specific surface area, pore volume and average pore diameter were reduced [3].

Table 1. BET and pore-structure data of Zn-Ni-Al-LDH and Zn-Ni-Al-LDH calcined at different temperatures

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Calcination temperature/ °C</th>
<th>(S_{BET} / (m^2 \cdot g^{-1}))</th>
<th>Adsorption average pore width / nm</th>
<th>Pore volume / (cm³ • g⁻¹) / ((P/P_0 = 0.9918))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unfired</td>
<td>73.8</td>
<td>15.9</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>141.8</td>
<td>10.8</td>
<td>0.31</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>153.5</td>
<td>9.9</td>
<td>0.36</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>146.1</td>
<td>9.2</td>
<td>0.35</td>
</tr>
</tbody>
</table>

As a comparison in Figure 5, the calcinated sample has more porous structure, resulting in a significant hysteresis loop and the emergence of the adsorption platform at high \(P/P_0 \) (0.9<\(P/P_0 <1 \)) place in its \(N_2 \) adsorption-desorption curves [23]. According to pore size distribution of calcinated samples, the mesoporous regional distribution is more even and the pore volume is opposite greater, indicating that suitable calcination can lead to collapse of the laminate structure and water loss.

Fig 5. Nitrogen adsorption-desorption isotherms and pore size distribution curves of samples (a) Zn-Ni-Al-LDH (b) Zn-Ni-Al-LDH calcined at 500 °C
3.2. Photocatalytic Activity

3.2.1. Effect of Calcination Temperature on the Photocatalytic Activity

Fig. 6 shows the effect of calcination temperature on the photocatalytic activity over the Zn-Ni-Al-LDHs calcined at 300, 400, 500, 600 and 700 °C. It was found that the catalytic efficacy was not linearly raised with temperature, and the maximum yield of methanol reached 2680 μmol·g⁻¹ with the sample calcined at 500 °C, which could be explained by the structure of calcined samples. According to TEM and SEM results, the obtained composite after calcination at 500 °C achieved the optimum conditions among the specific surface area, the degree of crystallinity and oxide composition ratio, making it has the highest photocatalytic reduction activity [24]. In other words, at different calcination temperatures, the hydrotalcite was converted into ZnO, NiO, ZnAl₂O₄ and NiAl₂O₄ in different proportions while multi-heterojunction structure was diverse [25].

![Fig 6. The influence of calcination temperature on methanol production](image)

3.2.2. Effect of Reduction Time on the Photocatalytic Activity

Photo-reduction of CO₂ is a complex process. The reduction products contained HCOOHCO, HCHO, CH₃OH and CH₄. Even the amount of reduction for each product would change over time [26]. It should be noted that the maximum amount of methanol generated within 6 h, and then reduced in Figure 7. This is because the gradually increased electrons is conducive to the reaction in the initial reaction activation process until 6 h, the photo-generated electron-hole generation, separation and consumption balance and the amount of methanol reach optimum values. However, with the continued reaction progress, methanol was continuously produced and was further reduced to methane and other products, eventually, the total content of methanol declined.

![Fig 7. The influence of different reaction time on methanol production](image)
3.2.3. Effect of Sacrifice Dosage on the Photocatalytic Activity

Photocatalytic reduction processes with a continuous production and consumption of photo-generated electrons, need a charge balance to make the photocatalytic reaction continued, and otherwise the presence of the reverse potential will inhibit the further production of the photo-generated charge. It has been reported that the sacrificial agent can quickly eliminate the potential difference, thereby helping to generate photo-generated charge, while the positive charge timely consumption can reduce recombination of photoinduced charge to improve the quantum efficiency [27, 28]. In this study, Na2SO3 and NaOH using as sacrificial agent can help to dissolve CO2, but also make the oxidation of SO32- successfully completed under alkaline conditions. In this reaction system, as long as the valence band potential of the photocatalyst is higher than the price charged sulfate of 0.93 eV, the oxidation reaction can be carried out smoothly. As shown in Figure 8, different amounts of sacrificial agent influenced photoreduction of CO2 within 6 h. It is obvious that the amount of NaOH and Na2SO3 is 0.04 mol, respectively, and the generation amount of methanol reaching a maximum value (2680 μmol·gcat⁻¹). However, when only NaOH or Na2SO3 was added, the generation amount of methanol was 1267 μmol·gcat⁻¹ or 1853 μmol·gcat⁻¹, respectively. Compared with the expense of mixing agent, the amount of CH3OH is greatly reduced. That is to say, sacrificial agent under basic conditions has a great impact on photoreduction activity [29].

Fig8. The influence of sacrificial agent amount on methanol production

3.3. Mechanism Analysis of Photocatalytic Reaction

A schematic illustration about the photocatalytic mechanism is presented in Figure 9. Under the simulated sunlight, photo-generated electrons excited from the valence band to the conduction band and formed the corresponding holes (h⁺) and free electrons (e⁻), and then photo-generated charge migrated from the interior to the surface of the catalyst. When the compound semiconductor conduction band position is more negative than CO2/CH3OH potential (-0.38 eV) and the valence band position is more positive than SO32-/SO42- potential (0.93 eV), the photocatalytic reduction of CO2 can be achieved. The ZnO, ZnAl2O4 and NiO conduction and valence bands were -0.31 eV, 2.89 eV, -1.14 eV, 2.66 eV and -0.50 eV, 3.0 eV, respectively. ZnAl2O4 can only be inspired by ultraviolet light and the resulting holes (h⁺) and free electrons (e⁻) easily compounded. When it forms a heterojunction with ZnO composite structure, ZnAl2O4 conduction band electrons migrate to the ZnO conduction band while the positive charge of ZnO valence band migrate to ZnAl2O4. In comparison, the composite oxides, containing ZnO, NiO and ZnAl2O4, have the lowest bandgap energy. In this case, the positive charge on the NiO can be further migrated to ZnAl2O4 valence band by ZnO valence band. That is to say, the introduction of NiO and the formation of composite oxide are beneficial for isolating photo-generated electric carriers, reducing the band gap energy and improving the reduction activity [30].
4. CONCLUSIONS

1) ZnO/NiO/ZnAl₂O₄ mixed-metal oxides with high BET surface area of 153.5 m² g⁻¹ were successfully synthesized through a hydrotalcite-like precursor route.

2) The mixed-metal oxide showed superior photocatalytic performance. A maximum of photocatalytic reduction of CO₂ was achieved from the LDH calcination at 500 °C.

3) The highest amount of methanol within 6 h reaches 2680 umol·g¯¹·h⁻¹ with 0.04 mol of NaOH and Na₂SO₃ as sacrificial agent, respectively.

ACKNOWLEDGMENTS

This research was financially supported by the National Natural Science Foundation of China (No. 51372080), the Natural Science Foundation of Hunan Provincial of China (No. 2017JJ2108), and the Scientific Research Foundation of Hunan Provincial Education Department of China (No. 15A076).

REFERENCES

Synthesis of Composite Oxides Derived from Zn-Ni-Al Layered Double Hydroxides and its Use in Photocatalytic Reduction of CO2

[28] OHNO T, HIGO T, MURAKAMI N, SAI TO H, ZHANG Qi-tao, YANG Yin, TSUBOTA T. Photocatalytic reduction of CO$_2$ over exposed-crystal-face-controlled TiO$_2$ nanorod having a brookite phase with co-catalyst loading[J]. Applied Catalysis B: Environmental, 2014, 152: 309-316.
