International Journal of Advanced Research in Chemical Science (IJARCS) Volume 1, Issue 1, March 2014, PP 10-21 www.arcjournals.org

Corrosion Control by Green Solution - An Overview

A.Sahaya Raja¹, P.Angel^{1*}, R.Sonisheeba¹, J.Thomas Paul raj¹, S.Sivakumar¹, R.Venkatesan¹, J.Sathiyabama¹.

¹Corrosion Research Centre, PG and Research Department of Chemistry,

G.T.N Arts College, Dindigul, T.N, India.

spsahayamdgl@gmail.com

angelmaria53@gmail.com

Abstract: Plant extracts have become important as an environmentally acceptable, readily available renewable source for wide range of inhibitors. They are the rich sources of ingredients which have very high inhibition efficiency. Several researchers are trying to make use of natural products as corrosion inhibitors. Plant scientists have already established the active principles present in most of the plant materials. The active principles form protective film on the metal surface by coordinating with metal ion through O, S or N atoms of the functional groups present in the active principles. The formation of the protective film have been analysed by many surface analysis techniques such as AFM, FTIR, UV, fluorescence spectra and SEM. This article briefly discusses some of the interesting features of the green inhibitors

Keywords: Green inhibitors, Plant extracts, Metal, AFM, SEM, UV, FTIR.

1. INTRODUCTION

Corrosion is the deterioration of metal by chemical attack or reaction with its environment. It is a constant and continuous problem, often difficult to eliminate completely. Prevention would be more practical and achievable than complete elimination. Inhibitors are substance which when added in small quantity to a corrosive environment, lower the corrosion rate. They reduces the corrosion by either acting as a barrier, by forming an adsorbed layer or retarding the cathodic and / or anodic process.

Before the 1960s inorganic inhibitors such as zinc, chromate, polyphosphate and nitrite were used as inhibitors. They provided good corrosion protections. However, discharge of such materials has become unacceptable, due to environmental hazards. Between 1960 and 1980, zinc, polyphosphate, phosphonates, polymer and phosphono carboxylic acids were used as corrosion inhibitors. After 1980 molybdate, phosphonates, phosphono carboxylic acids and polymers were used as inhibitors, along with metal ions such as Zn^{2+} . Recent trend is the search for environmental friendly inhibitors, by the researchers. Most of the natural products are non-toxic, biodegradable and readily available in plenty. Various parts of the plants-seeds, fruits, leaves, flowers etc have been used as corrosion inhibitors. Several studies have been published on the use of natural products as corrosion inhibitors [1-50].

1.1 Metals

Plant extracts used as inhibitors for metals such as mild steel[1are 4,6,8,9,13,14,17,19,21,22,25,26,30,32-37,41-43,48-50],Aluminium [11,27,29,40],Duplex brass [23]. C38Steel [28,46], Nickel [18]. Copper [18], Steel[47.24.31], Carbon Steel[5,7,10,12,16,20,38,44,45], Medium carbon low alloy steel{15}, Iron[18,39].

1.2 Medium

The plant extracts of various inhibition efficiency in different medium have been investigated such as acidic medium [1-4,8,9,13-17,19-26,31-38,40,41-43,45-50],Alkaline medium [11.27] and neutral medium[5-7,10,12,18,29,30,39,42]

1.3 Additives

During the application of plant extracts as inhibitor, additives are added along with it. Some of the additives used are NaCl and Na₂SO₄[1], KI and EtOH [4],CTAB[5,32], Zn²⁺[5,7,10,44], Malic acid[10],aluminiumsulphate [12], chloride [12,44].

2. METHODS

There are several methods used for finding the inhibition efficiency of various plant extracts used, weight loss method[23,26,27,29,30,32-38,41-45,48-50],Electrochemical studies (polarization and AC impedance) [1-3,5-27,28,41,42,44-49,50],Gravimetric technique[22,24,25,39,40],Gasometric method [22,45].

3. Adsorption isotherms

The thin film of extract of plant get deposited over the surface of the metal, which is studied using various adsorption isotherms such as, Langmuir adsorption isotherm[3,4,11-16,21-22,25,27,30,31,33-35,39,40,46,48-50],Freundlichadsorption isotherm[13,36], Tempkin adsorption isotherm[17,22,33].

And various thermodynamic parameters such free energy, enthalpy and entropy are also evaluated to prove various adsorption isotherms used.

4. SURFACE ANALYSIS

Surface analysis is carried out to study the film present over the metal surface and its monitored through various techniques such as SEM[1-3,9,10,17,25,30,35,37,41,45,50], AFM[7,35,41,44],EDX [37],FTIR [2,5,7,10,37,41,44,50],UV fluorescence[5,44],Raman spectra[46].

5. PLANT MATERIAL

Various plant parts are used and extracts are made out of it and are used as corrosion inhibitors like leaves[2,7,14,17,19,20,35,36,38,40,41,45,46], Bract[3], Flower[13,15,42,44], Fruit[30,31,34,37], Root[5,8,10,18], Stem[32], Peel[43,33].

6. EXTRACTS

Various solvents are used to prepare extracts out of plant materials, such as ethanol[4,19,29,49], water[5-7,12,18,29,30,39,44], Acid[10,39].

7. CONCLUSION

Corrosion control of metals is an important activity of technical, economical, environmental, and aesthetical importance. The use of inhibitors is one of the best options of protecting metals and alloys against corrosion. Generally green inhibitors are excellent inhibitors under a variety of corrosive environments for most of the metals. The non-toxicity, biodegradability, relatively less expensive and do not contain heavy metals are the major advantages for these inhibitors. The main disadvantage of using plant material as corrosion inhibitors is their instability; they are biodegradable. However, this disadvantage can be minimised or avoided by adding some biocides such as such as sodium dodecyl sulphate and N-Cetyl –N,N,N-trimethyl ammonium bromide. If plant materials are used as corrosion inhibitors, to prevent the corrosion of metals, the plant Kingdom will slowly diminish; Metals will be protected at the cost of destruction of plant Kingdom. Although a number of publications are witnessing the green inhibitors as a potential candidate against corrosion at different environments, further research efforts are needed to employ the green inhibitors widely at an industrial level.

8. SOME OF THE PLANTS USED AS CORROSION INHIBITORS ARE GIVEN BELOW

S. No	Meta l	Medium	Inhibitor	Additive	Methods	Findings	Refe renc e
1.	Mild steel	2M H ₃ PO ₄	Thymol(1PM P)	Nacl, Na ₂ SO ₄	a)Electochemic al impedence studies.	a) Corrsion increases with temperature	renc e 1 2 3 4 5 6 7
					b)Potentiodyna mic polarization. c)SEM	and causes evolution of hydrogen	
2.	Mild	HCl	Dodonaiavisc	-	a)EIS	a)Inhibition is by	2
	steel	H ₂ SO ₄	osa leaf extract		b)UV,FTIR,&S EM	adsorption of inhibition on metal surface	
					c)Potentiodyna mics Polarization		
3.	Mild	1N HCl	Bract extract	-	a)EIS	a)Inhibitor has	3
	steel		of musaacumina ta		b)Potentiodyna mic polarization	efficiency of 94.93% at 2%v/v inhibitor concentration	
					c)SEM		
4.	Mild steel	H ₂ SO ₄	Tannin extract of chamaeropsh umilis	KI EtOH	a)Thermodyna mics calculation	a)Obeys Langmuir adsorption isotherm	4
5.	Carb	Well	Betavulgaris	CTAB	a)EIS	a)98% of	5
	on steel	water	extract	Zn ²⁺	b)UV,FTIR spectra	inhibition efficiency by zinc	
					c)Potentiodyna mic polarization	b) controls cathodic reaction.	
6.	Mild	Drinking	Gum exudate	-	a)EIS	a)95%of	6
	steel	water	from Acacia seyal		b)Potentiodyna mic polarization.	inhibition efficiency at 400ppm	
						b)It's an anodic inhibitor	
7.	Carb on	Sea water	Eclipta Alba leaves extract	Zn ²⁺	a)AFM,FTIR b)EIS	a)It's a mixed type inhibitor	7
	steel				c)Polarization	b) 92% IE	
8.	Mild steel	H ₂ SO ₄	Alpine galinga	-	a)Potentiodyna mic polarization	a)Adsorption happens on metal surface	8
					b)EIS		
9.	Mild steel	1M HCl	EclobiumViri de	-	a)EIS b)Tafel	a) Obeys Langmuir adsorption	9

						1	
					c)SEM	b)Anionic inhibitor	
10.	Carb	Well	Albiumsativu	Zn ²⁺ ,Malic	a)SEM,FTIR	a)Controls anodic	10
	on steel	water	m	acid	b)Polarization	reaction	
						b) inhibition efficiency of 65%.	
11.	Alum inium	NaOH	Trachysperm umcoplium seed extract	-	a)Tafel polarization	a) Obeys Langmuir adsorption	11
						isotherm.	
						b)IE is 94% at 500ppm	
						c)It's a mixed type inhibitor	
12.	Carb on steel	Water	Propolis extract	Aluminiums ulphate,Chlo ride solution	a)Potentiodyna mic polarization	a) Obeys Langmuir adsorption isotherm.	12
						b)IE is upto 92%	
						c)It's a mixed type inhibitor	
13.	Mild steel	1M HCl	Cassia auriculata	-	a)Potentiodyna mic polarization	a) Follows Langmuir,Tempki n,Frendlich adsorption isotherm	13.
						b)IE is upto74.4%	
						c)It's a mixed type inhibitor.	
14.	Mild steel	1M HCl	Jatrophacurea s	-	a)Kinetic and thermodynamic parameters	a)Langmuir adsorption isotherm	14
						b)IE is upto 93.69%.	
15.	Medi um Carb on low alloy steel	H ₂ SO ₄	Lignin Extract of TithoniaDiner sifolia	-	a)Activation energy and negative free energy of adsorption.	a) Obeys Langmuir adsorption isotherm	15
16.	Carb on Steel	1M HCl	Sesbaniasesb an extract	-	a)Potentio dynamic polarization	a)obeys langmuir adsorption isotherm	16
	~					b)Inhibition efficiency is 91.08%	
						c)Mixed type inhibitor	
17.	Mild steel	H ₂ SO ₄ , 1M HCl	SolanumTube rosum	-	a)Electrochemi cal impedence	a)Mixed type inhibitor	17

Corrosion Control by Green Solution - An Overview

					studies b)SEM	b)Obeys tempkin adsorption isotherm	
18.	Iron, Nicke l, Copp er	Industrial chill water	Alliumcipa	-	a)Weight loss method	a)Inhibition efficiency is about 92%for iron,88%nickel,	18
	CI					46% for copper	
19.	Mild steel	HCl	Andrographis paniculata	-	a)Quantum chemical studies	a)physical adsorption happens	19
					b)GC-MS studies	b)anticorrosive agent	
20.	Carb on steel	H ₂ SO ₄	LaunaeaRese difolia	-	a)Electrochemi cal impedence studies	a)Mixed type inhibitor	20
21.	Mild steel	HCl	Fig leaves	-	a)Electrochemi cal impedence studies	a)obey langmuir adsorption isotherm	21
						b)Inhibition efficiency is about 87%	
22.	Mild steel	H ₂ SO ₄	Carica papaya	-	a)Gravimetric method b)Gasometric method	a)obeys langmuir and tempkin adsorption isotherm.	22
23.	Dupl ex brass	1N HNO ₃	Carica papaya extracts and camellia sinenris leaves	-	a)Weight loss method b)Potentiodyna mic polarization	a)exhibits corrosion reaction synergism	23
24.	Steel	H ₃ PO ₄	Rosemary oil	-	a)gravimetric method	a)oil is rich in 1,8- cineole	24
					b)Electrochemi cal impedance studies	b)inhibition efficiency decreases with temperature	
25.	Mild steel	H_2SO_4	Centellaasiati ca	-	a)Gravimetric method	a)obeys langmuir adsorption	25
					b)electrochemi cal impedance studies	isotherm b)Mixed type inhibitor	
					c)SEM	c)inhibition efficiency is upto95.08%	
26.	Mild steel	1N H ₂ SO ₄	NyctanthesAr bortristis	-	a)Weight loss method	a)Mixed type inhibitor	26
					b)polarization studies	b)Inhibition efficiency is upto90%	

A.Sahaya Raja et al.

27.	Alum inium	1M NaOH	Vitexnegundo	-	a)Weight loss method	a)Mixed type inhibitor	27
					b)electrochemi cal impedence studies.	b)obeys langmuir adsorption isotherm	
				-			
28.	C ₃₈	1MHC1	Aspidosperm a album		a)Potentiodyna mic polarisation	a)Obeys langmuir adsorption isotherm	28
					b)Electrochemi cal impedance studies	b)Mixed type inhibitor	
29.	Alum inium	Sea water	Marine micro algae	Ethanol, Dichloro ethane	a)Potentiodyna mic polarisation	a)Decreased corrosion rate	29
					b)Electrochemi cal impedance studies		
					c)Weight loss		
30.	Mild steel	Water	Green capsicum annum	-	a) Electrochemica 1 impedance studies	a)85% of inhibition efficiency	30
					b) Weight loss	b)Obeys langmuir adsorption isotherm	
					c)SEM		
31.	Steel	HCl	Prunuscerasu s	-	a) Electrochemica 1 impedance studies	a) Obeys langmuir adsorption isotherm	31
					b) Potentiodynami c polarisation		
32.	Mild steel	H_2SO_4	Aspararacem osus stem	СТАВ	a) Electrochemica 1 impedance studies	a)Inhibition efficiency is upto 51.11% and 91.66%	32
					b) Potentiodynami c polarisation		
					c) Weight loss		
33.	Mild steel	1M H ₃ PO ₄	Sidarhombifo lia	-	a) Electrochemica 1 impedance	a)Inhibition efficiency is upto97.8%	33
					studies b) Potentiodynami c polarisation	b) Obeys langmuir and tempkin adsorption isotherms	
					c) Weight loss		
34.	Mild steel	2M HCl	Egg plant peel	-	a) Weight loss b) Electrochemica	a) Obeys langmuir adsorption isotherm	34

Corrosion Control by Green Solution - An Overview

					1 impedance		
35.	Mild steel	0.5M H ₂ SO ₄	Musa Paradisiaca	-	a) Electrochemica 1 impedence studies b) Potentiodynami c	a) Obeys langmuir adsorption isotherm b)Mixed type inhibitor	35
					polarisation c) Weight loss d)SEM,AFM		
36.	Mild steel	HCl	Pterocarpusso yauxi	Ethanol	a)Weight loss	a)Fits to tempkin and freundlich adsorption	36
37.	Mild steel	HCl	Piper longum fruit	-	a) Electrochemica l impedance studies b) Potentiodynami c	a)Mixed type inhibitor	37
					polarisation c) Weight loss d)FTIR e)EDX,SEM		
38.	Carb on steel	0.5M H ₂ SO ₄	Buddleia perfoliata	-	 a) Electrochemica 1 impedance studies b) Potentiodynami c polarisation c) Weight loss 	a)Inhibition efficiency increases with concentration and decreases with temperature	38
39.	Iron	Water	Fenugreek seed	Citric acid	a)gravimetric method	a)Obeys langmuir adsorption isotherm	39
40.	Alum inium	HCl & H ₂ SO ₄	Newbouldia	-	a) gravimetric method	a) Obeys langmuir adsorption isotherm	40
41.	Mild steel	H ₂ SO ₄	Coromandelic a	-	 a) Electrochemica 1 impedance studies b) Potentiodynami c polarisation c) Weight loss d)FTIR,XRD 	a)Mixed type inhibitor	41

A.Sahaya Raja et al.

					OSEM AEM		
42.	Mild steel	0.5M H ₂ SO ₄	Magnolia champaca	-	e)SEM,AFM a) Electrochemica l impedance studies b) Weight loss	a)Inhibition efficiency increases with concentration	42
43.	Mild steel	2M H ₂ SO ₄	Musa sapientum peel	-	a) Weight loss	a)Inhibition efficiency is upto 71% b)Its non-toxic in nature	43
44.	Carb on steel	Water	Hibiscus Rosa sinensis Linn	Zn ²⁺ ,Cl	 a) Electrochemica l impedance studies b) Potentiodynami c polarisation c) Weight loss d)FTIR e)AFM f)UV spectra 	a)Mixed type inhibitor	44
45.	Carb on steel	1NHCI	Murrayakoeni gii	-	a) Electrochemica 1 impedance studies b) Potentiodynami c polarisation c) Weight loss d)gasometric studies e)SEM	a)Good inhibitor	45
46.	C ₃₈ steel	1MHCl	Oxandraasbec kii	-	a) Electrochemica 1 impedance studies b) Potentiodynami c polarization c)Raman spectra	a) Obeys langmuir adsorption isotherm b)Mixed type inhibitor	46
47.	Steel	1M H ₂ SO ₄ &2M HCl	Lupine	-	a) Electrochemica 1 impedance studies b) Potentiodynami	a)Mixed type inhibitor	47

Corrosion Control by Green Solution - An Overview

					c polarization		
48.	Mild steel	H ₂ SO ₄	Musa Acuminata	-	a) Electrochemica l impedance studies	a) Obeys Langmuir and temkin adsorption isotherm	48
					b) Weight loss	b)Mixed type inhibitor	
						c)Inhibition efficiency is upto96%	
49.	Mild steel	H ₂ SO ₄	Terminaliacat appa	Ethanol	a) Weight lossb)hydrogenevolutionc)Infraredmethods	a) Obeys langmuir adsorption isotherm	49
50.	Mild steel	1M HCl	Clematis gouriana	-	 a) Electrochemica 1 impedance studies b) Potentiodynami c polarisation c) Weight loss d)FTIR e)SEM 	a)Anticorrosive in nature b)Inhibition is upto 57% c)Obeys Langmuir adsorption isotherm	50.

References

- [1] M.A Ameer, A.M. Fekry, Progress of Organic coatings 71, (2011), pp 343-349.
- [2] S.Leelavathi, R.Rajalakshmi, Journal of material and environmental science 4(5), 2013, pp625-638.
- [3] N.Gunavathy, S.C.Murugavel, IOSR Journal of applied chemistry 5(2), 2012, pp29-35.
- [4] O.Benali,H.Benmehdi,O.Hasnaoe,C.Selles,R.Salghi,Journal of material and environmental science,4(1),2013,pp127-138.
- [5] J.ArokiaSelvi,SusaiRafendran,V.GangaSri,A.JohnAmalraj,B.Narayanasamy,Portugaliaeelect rochimicaacta 27(1),2009,pp1-11.
- [6] J.Buchweishaija, G.S.Mhinzi, Portugaliaeelectrochimicaacta 26, 2008, pp257-265.
- [7] V.Johnsirani,J.Sathiyabama,S.Rajendran,Portugaliaeelectrochimicaacta 31(2),2013,pp95-106
- [8] S.Ananthkumar, Dr.A.Sankar, S.Rameshkumar, IOSR Journal of applied chemistry, Volume-4, Issue-1, 2013, pp61-64.
- [9] S.L.Ashokkumar, P.Iniyanvan, M.Saravanakumar, A.Sreekanth, Journal of material and environmental science, 3(4), 2012, pp 670-677.
- [10] K.Rajam,S.Rajendran,M.Manivannan,R.Saranya,Journal of chemical,Biological and physical sciences,Vol2,No.3,2012,pp 1223-1233.
- [11] Singh Ambrish, Quraishi M.A, Recent journal of recent sciences, International science congress association 57, vol.1, 2011, pp57-61.

- [12] A.S Fouda, A.Hamdy Bade, African journal of pure and applied chemistry vol.7(10), October 2013, pp350-359.
- [13] J. Rosaline vimala, A.Leema Rose, S.Raja, International journal of chem. Tech. Research, vol.3, No.4, Oct-Dec(2011), pp1791-1801.
- [14] J. Olusegun Sunday, A.Adeiza Barnabas, I.Ikeke Kingsley, M.O.Bodunrin, Journal of emerging trends in engineering and applied sciences, 4(1), 2013, pp138-143.
- [15] Kenneth Kanayo, A. laneme and Sunday Joseph olusegun, Leonardo journal of sciences, Issue 20, Jan-June 2012, pp 59-70.
- [16] H. Hussien, Al-Sahlance Abdul-Wahab, A. Sultan Mustafa, M. Al-Faize, Aquatic sciences and Technology, vol. 1, No. 2, 2013.
- [17] Pandian,Bothi Raja,MathurGopalakrishnanSethuraman,Iran journal chemchemi.Eng.,vol.28,No.1,2009,pp 77-84.
- [18] S. Sulaiman, A.Nor-Anuar, A.S. Abd-Razak, S.Chelliapan, Research journal of chemical science, vol.2(5), 2012, pp 10-16.
- [19] Abdulfatal, A. Siaka.LadanMagaji,EnoE.Ebenso,Int.J.Electrochem.Sc i. 6,2011,pp 4316-4328.
- [20] AbdelhakimBelaidi,Amar zellagui,Noureddinegheeraf,SegniLadjel,Salah Rhouati. Chem. Sci. Transaction 2(1),2013,pp 270-274.
- [21] Taleb H. Ibrahim, Mohamed AbouZour, International journal of electrochemical science 6,2011, pp 6442-6455.
- [22] P.C.Okafor, E.E.Ebenso, Pigment and resin technology, Vol.36, No.3, 2007, pp 134-140(7).
- [23] C.A.Loto, R.T.Loto and A.P.I. Popoola,International journal of electrochemical science 6,2011,4900-4914
- [24] M.Bendahou, M.Benabdellah, B.Hammouti, Pigment and resin technology, Vol.35, Issue 2,2006, pp 95-100.
- [25] S.S.Shivakumar and K.N. Mohana, Advances in applied science research, 3(5), 2012.
- [26] R.Saratha, V.G. Vasudha, E.Journal of chemistry, 6(4), 2009, pp 1003-1008.
- [27] S.Geetha, S.Lakshmi,K.Bharathi,International journal of advanced scientific and technical research,vol.3(3).
- [28] M.Faustin,M. Lebrini,F.Robert,C.Roos,International journal of electrochemical science 6,2011,pp 4095-4113.
- [29] W. B. Wan nik, O.Sulaiman, A.F.Ayob, M.F. Ahmad, M.M.Rahman. International journal of engineering research and applications, vol. 2,2012, pp 455-458.
- [30] Gopalji,Sudhishkumarshukla,PriyankaDwivedi,Shanti Sundaram,Eno E. Ebenso,RajivPrakash,International journal of electrochemical science 7,2012,pp 12146-12158.
- [31] H.Ashassi-Sorkhabi, D.Siefzadeh, International journal of electrochemical science 1,2006, pp 92-98.
- [32] S.Ananth Kumar, A. Sankar, S. Rameshkumar, M.Vijayan, IOSR Journal of engineering ,vol.3, Issue 9, 2013, pp 1-5.
- [33] R. Saratha, R. Meenakshi, International journal of electrochemical science 6,2011, pp 5357-5371.
- [34] Taleb Ibrahim, MehadHabbab, Portugaliae electrochimicaacta 29(6), 2011, pp 405-417.
- [35] RamanandaS.Mayanglambam, Vivek Sharma,Gurmeet Singh,Corrosion science Elsevier,Vol.47,Issue 2,2005,pp 385-395.

- [36] I.M.LLoamaeke, T.U.Onuegbu, V.I.E.Ajiwe and U.C.Umeobika, International journal of plant, animal and environmental science.
- [37] Ambrishsingh, Vinodkumarsingh, M.A. Quraish, Arabian journal for science and engineering, vol.38, Issue 1,2013, pp 85-97.
- [38] Roy hopes-srsenes,Jose gonzalogonzalez Rodriguez,Gloria francisea Dominguez Patino,alberto Martinez-villafane,Journal of electrochemical science and engineering 2,2012,pp 77-90.
- [39] Alka Singh, S.Kalpana, Ultra chemistry, vol. 8(2), 2012, pp 175-179.
- [40] L.A. Nnanna, V.U.Obasi,O.C.Nwaduiko,K.I.Mejeh,N.D.Ekekwe,S.C.Udensi. Archives of applied science research,4(1), 2012,pp 207-217.
- [41] P.Muthukrishnan, B.Jeyaprabha, P.Prakash, 2013, Arabian journal of chemistry.
- [42] S.Ananthkumar, A.Sankar, M.Vijayan, S.Rameshkumar, IOSR Journal of engineering,vol.3,Issue 8,2013,pp 10-14.
- [43] L. Salami, T.O.Y. Wewe, O.P. Akinyemi and R.J. Patinvoh, Global engineers and Technologists Review, vol.2, No.12, 2012, pp 1-6.
- [44] K. Anuradha, R. Vimala, B. Narayanasamy, J. ArokiaSelvi and SusaiRajendran. Chemical engineering communications, vol. 195, Issue 3, 2007.
- [45] A.Sharmila, A.AngelinPrema and P.ArokiaSahararaj, Rasayan journal of chemistry,vol.3,no.1,2010,pp 74-81.
- [46] M.Lebrini, F.Robert, A.Leeante, C.Roos, Corrosion science, vol.53, Issue 2, 2011, pp 687-695.
- [47] A.M.Abdel-Gaber,B.A.Abd-El-Nabeij,M.Saadawy,Corrosion science,vol.51,issue 25,2009,pp 1038-1042.
- [48] N.Gunavathy and S.C.Murugavel, E-Journal of chemistry, vol.9, Issue 1, 2012, pp 487-495.
- [49] Nnaukokon eddy, Petricia A. Ekwumembgo and Paul A.P. Mamza, Green chemistry Letters and reviews, vol.2, Issue 4,2009, pp 223-231.
- [50] GopiramMayakrishnan,SakunthalaPitchai,Kanmani Raman, Alex Ramani Vincent, SulochanaNagarajan,Ionics,vol. 17,Issue 9,2011,pp 843-852.

AUTHORS' BIOGRAPHY

Dr.A.Sahaya Raja,M.Sc.,B.Ed.,M.Phil.,Ph.D., is working as Assistant Professor of chemistry at G.T.N.Arts College, Dindigul. He is an old Student of Arulanandar College,Karumathur, St.Joseph's College, Trichy, Loyola College, Chennai and St.Xavier's College, Thirunelveli .He is an Expert in the field of Corrosion Science. He has rich teaching experience of seven years and He has published Five Research papers and four papers in conference in the field of chemistry

P.ANGEL, M.Sc.,B.Ed.,(M.Phil)., is M.Phil., research Scholar doing research work in the field of Corrosion Science at G.T.N.Arts College,Dindigul. She had her Education at Jayaraj Annapackiam College For Women, Periyakulam,GTN Arts College, Dindigul, and NPR Educational Institution, Dindigul.

A.Sahaya Raja et al.

R.Soni Sheeba., **M.Sc.,B.Ed.,**(**M.Phil**)., is M.Phil., research Scholar doing research work in the field of Corrosion Science at G.T.N. Arts College, Dindigul. She is an old student of M.V.M. Women's Arts College, Dindigul, G.T.N. Arts College, Dindigul and Peace Educational Institution, Dindigul.

J.T homas Paulraj, M.Sc., B.Ed., (M.Phil).,)., is M.Phil., research Scholar doing research work in the field of Corrosion Science at G.T.N.Arts College, Dindigul. He is an old student of St.Joseph's College, Trichy and St.Xavier's College of Education, Palayamkottai

S.Sivakumar, M.Sc., (M.Phil)., is M.Phil., research Scholar doing research work in the field of Corrosion Science at G.T.N. Arts College, Dindigul. He had his Education at Govt.Arts.College, Udumalpet and Annamalai University, Chidambaram.

R.Venkatesan, M.Sc., (M.Phil)., is M.Phil., research Scholar doing research work in the field of Corrosion Science at G.T.N.Arts College, Dindigul. He is an old student of Govt. Boys. Hr.Sec.School, Nilakottai and G.T.N. Arts College, Dindigul.

Dr.J.Sathiyabama, M.Sc.,M.Phil.,M.Ed.,Ph.D., is working as Associate Professor and Head, Department of chemistry, G.T.N.Arts College, Dindigul. She is an Expert in the field of Corrosion Science. She has rich teaching experience of 27 years and she published 32 papers in journal and 20 papers in conference in the field of chemistry. She has successfully Guided 02 Students for Ph.D. Degree and 18 students for M. Phil. Degree and 4 Ph.D. Students at present Working. She had her Education at Jayaraj Annapackiam College For Women, Periyakulam,P.S.G.College of Arts and Science, Coimbatore, Alagappa University, Karikudi, Madurai Kamaraj University,Madurai. She has been a Chairman of M.Phil Board at

Madurai Kamaraj University.Madurai and Board of Studies/Board of Examiners of various colleges and Universities.