

Md. Mamunur Rashid^{1*}, Sultana Jasmin²

¹Consultant, MBBS, BCS, FCPS, MD, Sheikh Russel National Gastroliver Institute & Hospital, Mohakhali, Dhaka, Bangladesh

²Medical officer, Sir Salimullah Medical College (SSMC) & Mitford Hospital, Dhaka, Bangladesh

*Corresponding Author: Md. Mamunur Rashid, Consultant, MBBS, BCS, FCPS, MD, Sheikh Russel National Gastroliver Institute & Hospital, Mohakhali, Dhaka, Bangladesh Email: publication985@gmail.com

Abstract:

Introduction: The worldwide accepted tool for screening and monitoring gastro-oesophagealvarices inpatientswithlivercirrhosisisuppergastrointestinalendoscopy.Endoscopyneedsclinicalexpertise and has got its own procedure related complications. Repeated endoscopies may be expensive and patients tend to develop poor compliance.

Objective: This study was undertaken to establish the role of non- invasive parameters in predicting gastroesophagealvarices.

Methods: This observational, cross-sectional, hospital based study was carried out in the Department of Medicine, Sheikh Russel National Gastroliver Institute & Hospital, Mohakhali, Dhaka, Bangladesh from April 2020 to August 2020. Informed consent was taken from patients or/and patient relatives. Two hundred patients with clinical features, laboratory and sonological findings suggestive of cirrhosisofliver and endoscopic evidence of portal hypertension were included in the study. Blood parameters like serum albumin, international normalized ratio (INR), platelets count and ultrasonography assessments of portal vein diameter and spleen size were compared with presence of gastro-oesophagealvarices.

Results: A total of 200 patients with cirrhosis of liver; 154 (77%) male and 46 (23%) female were enrolled in the study. Mean age of the study group was 54.3 years (range of 27 to 85 years). Alcoholic cirrhosis accounted 170 (85%) patients of total cases. Twenty (10%) cases were diagnosed with chronic hepatitis B. Five (2.5%) cases were of chronic hepatitis C and rest 5 (2.5%) were classified as cryptogenic. One hundred and forty (70%) patients had esophageal varices at presentation. No sex difference was noted in cirrhotic subjects with varices. At cutoff point of 2.55g/dl, serum albumin had high specificity of 99% whereas platelets count<1,44,000/mm³had 87.9% sensitivity for presence of oesophagealvarices. Sensitivities of 92.72% and 94.5% while specificities of 90% and 75% were detected for presence of oesophagealvarices when the cutoff values for portal vein diameter and spleen size were 12.25 mm and 13.9 cm respectively.

Conclusions: Measurements of serum album in, platelets count, portalve in diameter and spleen size by ultrasonography can be recommended as a non-invasive predictor for gastro-esophageal varices in cirrhosis of liver. All these non-invasive parameters could be useful to patients with liver cirrhosis with portal hypertension in predicting presence of varices as well as in long-term clinical monitoring and management.

Keywords: Cirrhosis Of Liver; Endoscopy; Gastro-OesophagealVarices; Non-Invasive Predictors.

1. INTRODUCTION

Gastroesophagealvarices (GEV) is a serious consequences of portal hypertension in patients with advanced chronic liver disease (CLD) as portal hypertension is a key event in the evolution of CLD when severe fibrosis or cirrhosis develops. Once portal pressure exceeds 10 mmHg (clinical significant portal hypertension – CSPH), patients are at risk of experiencing severe complications such as varicealhaemorrhage (VH).

Approximately 30-40% of compensated cirrhotic patients develop GEV at a rate of 7–8% per year and progression from small to large varices occurs at a rate of 10%-12% per year. Cirrhosis of liver is a progressive, diffuse,

fibrosing, nodular condition of liver that disrupts its entire normal architecture.[1] Portal hypertension leads to dilatation of portal vein, splenomegaly, ascites and formation of portal including systemic collaterals gastrooesophagealvarices. Variceal bleeding is a lifethreatening complication of cirrhosis.[2-4] Liver cirrhosis is a common disease in Bangladesh. Patients usually present late in decompensated state with myriad of complications. Upper Gastro-intestinal endoscopy is considered the best screening tool for detection of varices in cirrhotic patients.[5,6] Despite its advantages, it is an invasive method and expertise not readily compliance tends to available. Patients' decrease as they have to be subjected to repeated endoscopies for surveillance, screening and follow ups. This study was undertaken to establish the role of some non-invasive

parameters like serum albumin, platelets count, international normalized ratio, portal vein diameter and spleen size measurement by ultrasonography in predicting gastrooesophagealvarices. Due to invasive in nature, several initiatives are noticed over the last few years to invent noninvasive methods to predict the presence of GEV. But the result of the studies are inconclusive and sometimes controversial. More recently, a sequential algorithm based on LS, platelet count and ultrasound parameters have been used in few sites. But none of these non-invasive strategies have been evaluated specifically in patients with Chronic Liver Disease. In Bangladesh, very few studies are noticed regarding this topics. Therefore the purpose of the study is to evaluate the noninvasive methods to predict the presence of GEV among the patients present with CLD.

Esophageal varices

2. OBJECTIVE

This study was undertaken to establish the role of non- invasive parameters in predicting gastroesophagealvarices.

3. METHODS

This observational, cross-sectional, hospital based study was carried out in the Department of Medicine, Sheikh Russel National Gastroliver Institute & Hospital, Mohakhali, Dhaka, Bangladesh from April 2020 to August 2020. Informed consent was taken from patients or/and patient relatives. Ethical approval was taken from Institutional Review Committee of College of Medical Sciences. All cases attending the department of medical gastroenterology as outdoor and/or admitted in ward with clinical features, laboratory and sonological findings suggestive of cirrhosis of liver and assessed according to Child-Turcotte-Pugh (CTP) score along with sonological and/ or endoscopic evidence of portal hypertension were included in the study. The following cases

with portal hypertension were excluded from the study: 1. Cirrhosis with hepatic encephalopathy III /IV. 2. Critically ill patients, cirrhotic patients with end stage renal failure, hepatocellular carcinoma and those who fail to give consent. 3. Other cases with portal hypertension, i.e., non-cirrhotic portal hypertension, Budd-Chiari syndrome, extra hepatic portal venous obstruction.

A detailed history, general physical examination and clinical examination of the abdomen were done. Patients were classified under CTP classes. Basic blood investigations like complete blood count, platelets count, liver function test, prothrombin time/international normalized ratio (PT/INR), coagulation profile and others were done as necessary.

After an overnight fast, patients underwent Ultrasonography (USG) of the abdomen and Upper gastro-intestinal (UGI) endoscopy in the morning. A complete study of liver, spleen, portal, and splanchnic veins by Doppler

ultrasonography (TOSHIBA XARIO model SSA-660A ultrasound system) capable of Bmode imaging using a 3.5 MHz curved array transducer was performed by consultant radiologist. Spleen size and portal vein diameter (PVD) were measured by placing the patient in supine position during full inspiration. The spleen can be more echogenic when it enlarges. A maximum cephalo-caudal measurement of more than 13 cm indicates enlargement. In normal individuals, the PVD does not exceed 13 mm in quiet respiration and is measured where the portal vein crosses anterior to the IVC.3 Each patient underwent endoscopic investigation flexible standard by gastroduodenal endoscope (PENTAX EPK 700, PENTAX JAPAN Inc) and diagnostic findings were documented. Varices were classified as small (≤ 5 mm diameter) or large (>5 mm diameter) when assessed with full insufflations.5

Data Analysis: Data were collected on a structured proforma covering the relevant subjects of the study and entry was done in Statistical Packages for the Social Sciences (SPSS) version 20. All categorical data were expressed in percent and absolute number. All numerical continuous data were expressed in mean \pm SD. The data analysis was done using SPSS version 20. Chi squared test was used to test for significant difference of proportions (categorical data). Additionally, Receiver Operating Characteristic (ROC) curves for

Table1. Distribution of subjects according to CTP classes.

albumin, platelets, INR, portal vein diameter and spleen size to predict the presence of varices were constructed. Further analyses were performed to estimate the best cut off points for all these non-invasive parameters with sensitivities and specificities at those points. All tests were analyzed with a 95% confidence interval and a P value of <0.05 was considered significant.

4. **RESULTS**

A total of 200 patients with cirrhosis of liver; 154 (77%) male and 46 (23%) female were enrolled in the study. Mean age of the study group was 54.3 years (range of 27 to 85 years). Alcoholic cirrhosis accounted 170 (85%) patients of total cases. Twenty (10%) cases were diagnosed with chronic hepatitis B. Five (2.5%) cases were of chronic hepatitis C and rest 5 (2.5%) were classified as cryptogenic. One hundred and forty (70 %) patients had esophageal varices at presentation. No sex difference was noted in cirrhotic subjects with varices. No cases of cirrhosis were detected with class A. Cirrhotic subjects without varices were almost equally distributed between class B and C. Majority of cases with varices were of Class C. Significant association was observed between CTP classes and presence of varices (Chi sq. test statistic=9.99; df=1;P=0.002). Risk of varices being present increases with CTP class and varices being present in Class C individuals was found to be 1.43 times that in Class B [Table 1].

Particulars			Total	
		Class B	Class C	
Esophageal Varices	No Varix	28	32	60
	Varices	30	110	140
Total		56	144	200
Chi sq. test statistic=9.99; df=1; P=0.002 Risk Ratio of presence of varices in Class Cvs. ClassB =1.43				

values of all the non-invasive Average parameters of both variceal and non variceal groups were calculated. Average value of serum albumin of patients without gastrooesophagealvarices was 3.10±0.41 gm/dl, while it was 2.68±0.51 gm/dl in patients with varices. This difference was statistically significant (P<0.001). Average platelets count of patients without varices was 176570±7510/mm3 and with varices was 111890 \pm 3584/ mm3. This difference was statistically significant (P<0.001). Average value of INR of patients gastro-oesophagealvarices without was

 1.63 ± 0.56 , while it was 1.96 ± 1.25 in patients with varices. However, no significant difference was observed (P=0.051; P was >0.005). Average portal vein diameter (PVD) of patients gastro-oesophagealvarices without was 10.82±1.18 mm, while it was 13.69±1.10 mm in patients with varices. This difference was statistically significant (P<0.001). Average spleen size of patients without varices was 12.66 ± 2.15 cm. and with varices was 15.50±1.01 cm. This difference was statistically significant (P<0.001) [Table 2].

The Role of Non-Invasive Predictors of Gastro-Oesophageal Varices: A Study in Sheikh Russel National Gastroliver Institute & Hospital, Mohakhali, Dhaka, Bangladesh

Parameters	Non-varicealgroup	Variceal group	Significance
	n=60	n=140	(P value)
Albumin	3.10±0.41	2.68±0.51	< 0.001
Platelets (x 1000)	176.57±75.1	111.89±35.84	< 0.001
INR	1.63±0.56	1.96 ± 1.25	0.051
Portal vein diameter (PVD; mm)	10.82±1.18	13.69±1.10	< 0.001
Spleen size (cm)	12.66±2.15	15.50±1.01	< 0.001

Table2. Comparisons of non-invasive parameters between non variceal and variceal groups

Receiver operating characteristic (ROC) curve of PVD and spleen size when plotted showed that both were significant predictors for the presence of varices. The ROC curve of INR on the other hand showed that it was a poor predictor for the presence of varices when compared with ROC curves of both PVD and spleen size [Figure 1]. The portal vein diameter was stronger predictor (AUC–PVD = 0.948; P<0.001 vs. AUC–spleen size = 0.895; P<0.001 vs. AUC–INR=0.571; p=0.109) [Table 3].

Figure1. ROC curve for sensitivity and specificity of portal vein diameter, spleen size and INR for the prediction of varices

Receiver operating characteristic (ROC) curve of platelets count and serum albumin level when plotted showed that both were significant predictors for the presence of varices [Figure 2]. The reduced platelets count was relatively a better predictor compared to reduced serum albumin level (AUC-platelets count = 0.766; P<0.001 vs. AUC-serum albumin level = 0.716vs.; P<0.001) [Table 3].

Figure 2. ROC curve for sensitivity and specificity of albumin and platelets count for the prediction of varices.

Area Under the Curve					
Test Result	Area	Std. Error	Asymptotic Sig.	Asymptotic 95%	
Variable (s)				Confidence Interval	
				Lower Bound	Upper Bound
Albumin	0.716	0.037	< 0.001	0.643	0.788
PlateletsCount	0.766	0.038	< 0.001	0.691	0.841
INR	0.571	0.044	0.109	0.486	0.657
PortalVein	0.948	0.017	< 0.001	0.914	0.982
Diameter (mm)					
SpleenSize	0.895	0.029	<0.001	0.840	0.951

Table3. Statistical correlation between various non- invasive parameters

Best cutoff points for predictors of presence of gastro-oesophagealvarices were detected by ROC curve analysis. There was 90% sensitivity and 88.3% specificity for prediction of presence of oesophagealvarices when the cutoff value (by ROC curve analysis) for portal vein diameter was 12.25 mm. There was 97.1% sensitivity and 76.7 % specificity for prediction of presence of oesophagealvarices when the cutoff value (by ROC curve analysis) for spleen size was 13.9

cm. There was low sensitivity of 39.3% but high specificity of 99% for prediction of presence of oesophagealvarices when the cutoff value (by ROC curve analysis) for albumin was <2.55 gm/dl. There was 87.9% sensitivity but low specificity of 41.7% for prediction of presence of oesophagealvarices when the cutoff value (by ROC curve analysis) for platelets count <1,44,000/mm3 [Table 4].

Table4. Sensitivities and specificities of various parameters with their best cutoff points

Parameters	BestCut-off point	Sensitivity(%)	Specificity(%)
Albumin	2.55	39.3	99
Platelets Count	144000	87.9	41.7
Portal VeinDiameter(mm)	12.25	90.0	88.3
Spleen Size	13.9	97.1	76.7

5. DISCUSSION

Two hundred forty patients of cirrhosis of liver with gastro-oesophagealvarices were taken up for the study. But 12 patients were taken away to home or elsewhere by patient relatives against medical advice despite initial management and few days of admission and 18 were excluded because of inadequate data. Finally, a total of 200 patients with cirrhosis of liver were enrolled in the study. Upper GI endoscopy is considered the best screening tool for varices in cirrhotic patients and to diagnose those at risk of bleeding. Presence of large varices, cherry red spots on endoscopy are some signs associated with high risk of bleeding.[5,6] Repeated endoscopic examinations and surveillance are recommended in cirrhotic patients with and without gastro-oesophagealvarices. Despite the advantages of endoscopy, it is still expensive, invasive method and has poor compliance among patients. Various non-invasive tools have been described in literatures which could be used as indirect predictors for presence of gastro-oesophagealvarices. Two hundred cirrhotic patients (male 77%; female 23%) with mean age of 54.3 years (median age of 54 years; range of 27 to 85 years) were enrolled in the study. Similar pattern of male dominance of

69.3% has been reported by Mandal et al,[7] and 86.1% by Sharma and Aggarwal [8], in their series. However median age of our patients was more (54 years) than those reported by them as 40 years and 45 years respectively. Etiology of cirrhosis in our series was chronic alcohol consumption (85%) followed by chronic hepatitis B (5%), chronic hepatitis C (2.5%) and cryptogenic (2.5%). Esophageal varices were detected in 70 % of cirrhotics at presentation. Mandal et al,[7] reported 75.6% of cirrhotics with varices. Risk of varices was found to increase with CTP class. Individuals with CTP class C were found to have 1.43 times more varices than those in Class B. Average value of serum albumin of patients without gastrooesophagealvarices was 3.10 ± 0.41 gm/dl, while it was 2.68±0.51 gm/dl in patients with varices. This difference was statistically significant (P <0.001). There was low sensitivity of 39.3% but high specificity of 99% for prediction of presence of oesophagealvarices when the cutoff value (by ROC curve analysis) for albumin was <2.55g/dl. Mandal et al,[7] reported serum albumin of 3.484±0.402 in patients without varices and 2.52±0.421 in patients with varices (P>0.10). Shanker et al,[9] reported that serum albumin was lower (2.3±0.5 gm/dl) in patients with varices than in patients without varices

(3.2±0.4 gm/dl; P<0.01). Sarwar et al,[10] also described low serum albumin to be an independent factor associated with presence of oesophagealvarices, however another study by Cherian et al,[11] described insignificant correlation between serum albumin and oesophagealvarices. This could be due to variation in sample sizes etiology, duration of illness, stages of liver cirrhosis and their complications at presentation and many other factors. Average platelets count of patients without varices was 176570±7510/mm3 and with varices was 111890±3584/mm3 (P<0.001). Mandal et al.^[7] reported average platelets count of 2,15,000±5,500/ mm3 in patients without varices and 1,11,000±2,840/ mm3 in patients with varices (P>0.10). Our study had sensitivity of 87.9 % and specificity of 41.7% for cutoff platelets count of <144,000/ mm3. Shanker et al,[9] reported platelet count of <120,000/mm3 to be 90% sensitive and 50% specific in predicting oesophagealvarices. Thomopoulos et mentioned platelet al,[12] count of <118,000/mm3 to be a good predictor for presence of varices with sensitivity of 95% and specificity of 73%. Average value of INR of patients without gastro-oesophagealvarices was1.63±0.56, while it was 1.96±1.25 in patients with varices and no significant difference was observed (P=0.051; P was >0.005). This study showed that patients without varices had average PVD 10.800±1.1402 mm, while it was 13.731±1.061mm in patients with varices. This difference was statistically significant (P<0.01). In an Indian study, Mandal et al,[7] mentioned average PVD of patients gastro-oesophagealvarices without was 11.545±1.514 mm (P<0.05) and with varices was 13.998±1.123 mm. Shanker et al,[9] reported the average PVD 11.78±1.58 mm in non-variceal group and 14.05±2.26 mm in variceal group (P<0.01). Portal vein diameter of 10.5 ± 2.6 mm among patients without esophageal varices and PVD of 11. 5±2.4 mm among patients with varices were reported by Ng et al.[13]The best cutoff of PVD for prediction of oesophagealvarices in our study population was>12.25 mm (Sensitivity=90%, Specificity=88.3%). Shanker et al,[9] in India, reported PVD>12.20 mm, value similar to ours, as a predictor of esophageal varices (sensitivity 80%, specificity=80%). Prihatini et al. [14] and Cherian et al. [11] mentioned PVD of 15 mm and 13 mm respectively to be predictive for variceal detection in cirrhotic patients. Portal vein diameter mentioned for development of

gastro-esophageal varices was 13.5 mm by Thomopoulos et al.12 13 mm by Schepis et al,15 and 11 mm by Sarwar et al.[10]In the present study, average spleen size of patients without varices was 12.66±2.15 cm. and with varices was 15.50±.01 cm. This difference was statistically significant (P<0.001). Mandal et al,[7] mentioned average spleen size for patients gastro-oesophagealvarices without as $13.13\pm1.1c$ m and with varices as 14.99 ± 1.92 cm. Shanker et al,[9] reported that average size of spleen in variceal group (14.69±1.08 cm) was larger than in non-variceal group (12.45±0.65 cm) (P<0.01).In this study, there was 97.1 % sensitivity and 76.7% specificity for prediction for oesophagealvarices being present when the cutoff value (by ROC curve analysis) of spleen size was >13.9 cm. Shanker et al,[9] reported 90% sensitivity and 80% specificity for prediction for presence of oesophagealvarices when the cutoff value of spleen size was >13.5cm which is in consistency with our results. Spleen size of more than 13.5 cm (values almost similar to ours) and more than 13.15 were associated with gastro-oesophagealvarices according to Thomopoulos et al,[12] and Serag et al.[16] respectively. Shankar et al.[9] described a positive correlation between PVD and grades of oesophagealvarices and also between spleen size and variceal grading. The current study had some limitations. Liver biopsy was not performed which is the gold standard for establishing the diagnosis of cirrhosis of liver. Liver biopsy has now become obsolete since the introduction of fibroscan and other markers of fibrosis. But these are expensive and indirect markers and they have their own limitations. So patients were diagnosed as cirrhosis clinically with stigmata of chronic liver disease and clinical evidence of portal hypertension and these findings were further supported with ultrasonological and endoscopic findings. Estimation of spleen size and portal vein diameter by ultrasonography is operator dependent. A larger sample size and proper sampling with case controlled studies and randomized controlled trials would have provided a clearer picture.

6. CONCLUSION

In cirrhotic patients with portal hypertension, low serum albumin, low platelets count and ultrasonographic measurement of portal vein diameter and spleen size are useful in predicting presence of gastro-oesophagealvarices. This would be useful in areas where endoscopy

facilities are not available. Further, regular follow up endoscopies can be avoided. Noninvasive parameters can hereby, be recommended as indirect predictors for presence of gastro-oesophagealvarices in patients with cirrhosis of liver. These would thus be valuable in cirrhotic patients in the long-term monitoring, follow ups and management.

REFERENCES

- [1] Bacon BR. Cirrhosis and its complications. In: Kasper DL, Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J, editors. Harrison's principles of internal medicine.19th Ed. New York: McGraw Hill; 2016:2058-66.
- [2] Heidelbaugh J, Bruderly M. Cirrhosis and chronic liver failure. Diagnosis and Evaluation J Am Fam Physician. 2006; 74(5):756-62.
- [3] Zwibel WJ. Ultrasound assessment of the hepatic vasculature. In: Zwibel WJ, Pellrrito JS, editors. Introduction to vascular ultrasonography. 5th ed. Philadelphia: Elsevier. 2005:585-609.
- [4] Sherlock S, Dooley J. Diseases of the Liver and Biliary System, 12th ed. London: Blackwell Scientific Publications. 2011:179-81.
- Jensen DM. Endoscopic screening for varices in cirrhosis: findings, implications, and outcomes. Gastroenterology. 2002; 122(6):1620-30.
- [6] D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. JHepatol.2006; 44(1):217–31.
- [7] Mandal L, Mandal SK, Bandyopdhyay D, DattaS. Correlation of portal vein diameter and splenic size with gastro-esophageal varices in cirrhosis of liver. JIACM. 2011; 12(4):266-70.
- [8] Sharma SK, Aggarwal R. Prediction of large oesophagealvarices in patients with cirrhosis of the liver using clinical, laboratory and

imaging parameters. Journal of Gastroenterology and Hepatology. 2007; 22(11):1909-15.

- [9] R, Banerjee S, Anshul, Ganguly S, Bansal S, Uppal A, et al. A study of association of portal vein diameter and splenic size with gastrooesophagealvarices in liver cirrhosis patients. IOSR Journal of Dental and Medical Sciences. 2016; 15(9):125-9.
- [10] Sarwar S, Khan AA, Alam A, Butt AK, Shafqat F, Malik K, et al. Non-endoscopic prediction of presence of esophageal varices in cirrhosis. J Coll Physicians SurgPak. 2005; 15(9):528-31.
- [11] Cherian JV, Deepak N, Ponnusamy RP, SomasundaramA, Jayanthi V. Non-invasive predictors of esophageal varices. Saudi J Gastroenetrol. 2011; 17:64-8.
- [12] Thomopoulos KC, Labropoulou-Karatza C, Mimidis KP, Katsakoulis EC, Iconomou G, Nikolopoulou VN. Non-invasive predictors of the presence of large oesophagealvarices in patients with cirrhosis.DigLiverDis.2003; 35(7):473-8.
- [13] Ng FH, Wong SY, Loo CK, Lam KM, Lai CW, Cheng CS. Prediction of oesophago gastricvarices in patients with liver cirrhosis. J GastroenterolHepatol. 1999; 14(8):785-90.
- [14] Prihatini J, Lesmana LA, Manan C, Gani RA. Detection of esophageal varicesin liver cirrhosis using non-invasive parameters. Acta Med Indones. 2005; 37(3):126-31.
- [15] Schepis F, Cammà C, Niceforo D, Magnano A, Pallio S, Cinquegrani M, et al. Which patients with cirrhosis should undergo endoscopic screening for esophageal varices detection? Hepatology. 2001; 33(2):333-8.
- [16] Esmat S, Dalia OmranD. Study of noninvasive predictors of portal hypertension in liver cirrhotic Egyptian patients. Journal of American Science. 2011; 7(1):962-8.

Citation: Md. Mamunur Rashid, The Role of Non-Invasive Predictors of Gastro-Oesophageal Varices: A Study in Sheikh Russel National Gastroliver Institute & Hospital, Mohakhali, Dhaka, Bangladesh. ARC Journal of Hepatology and Gastroenterology. 2020; 4(2): 16-22.

Copyright: © 2020 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.