Tako-Tsubo Syndrome and Diabetic Mellitus Review of Literature and a Case Report

Walid Hassan*, Tarek Abou Ghazala, Sahar Sharaf Eldin, Mohamed Ali Salah, Malik Kamal Malik, Nadir El Akhdar

Department of Cardiovascular Disease, International Medical center, Jeddah, Saudi Arabia

*Professor of Medicine and Senior Consultant, Director of the Cardiac Center of Excellence
International Medical center, Jeddah 21451, Saudi Arabia
whassan@imc.med.sa

Abstract: The entity of Takotsubo syndrome or cardiomyopathy also referred to as transient apical ballooning syndrome, stress cardiomyopathy or broken heart syndrome is a recently recognized syndrome typically characterized by transient and reversible left ventricular dysfunction that develops in the setting of acute severe emotional or physical stress. Increased catecholamine levels have been proposed to play a central role in the pathogenesis of the disease, although the specific pathophysiology of this condition remains to be fully determined. At present, there have been few reports of Takotsubo cardiomyopathy associated with diabetes mellitus. In this case report, we present a patient with multiple recurrences of Takotsubo triggered by diabetic ketoacidosis.

Keywords: Takotsubo, Recurrence, Diabetes, Ketoacidosis.

1. INTRODUCTION

Tako-tsubo syndrome (TTS) or Cardiomyopathy (TC) is an increasingly recognized entity characterized by transient (reversible) apical and mid left ventricular (LV) dysfunction in the absence of significant coronary artery disease that is potentially triggered by severe emotional, physical stress, medical illness (acute exacerbations of multiple medical conditions such as asthma, sepsis, gastrointestinal bleeding or hypoglycemia) procedures or surgeries [1,2,3]. Increased catecholamine levels have been proposed to play a central role in the pathogenesis of this condition [4].

The Takotsubo phenomenon was first described in 1991 by Dote et al [1], who named the syndrome “Takotsubo like cardiomyopathy” because the appearance resembles a pot historically used in Japan to catch octopi. Other names of this syndrome are Stress-induced Cardiomyopathy, apical ballooning syndrome, broken heart syndrome, ampulla cardiomyopathy [1,2,3]. Typically, it recovers to normal LV function in 1-4 weeks. It may account for up to 2% of suspected acute coronary syndrome (ACS), TTS or TC is much more common in women than men, particularly post-menopausal women [1,2,3,5]. In a review of six prospective and four retrospective studies women accounted for 80 to 100 percent of cases, with a mean age of 61 to 76 years [5].

Tako-tsubo cardiomyopathy is a diagnosis of exclusion [6]. Researchers at the Mayo Clinic proposed diagnostic criteria in 2004, which include; (1) transient hypokinesis, akinesis, or dyskinesis in the left ventricular mid segments with or without apical involvement; regional wall motion abnormalities that extend beyond a single epicardial vascular distribution and frequently, but not always, a stressful trigger; (2) the absence of obstructive coronary disease or angiographic evidence of acute plaque rupture; (3) new ECG abnormalities (ST-segment elevation and/or T-wave inversion) or modest elevation in cardiac troponin; and (4) the absence of pheochromocytoma and myocarditis [2].

Numerous etiologies have been described, including catecholamine release during stress [2, 7, 8], and microvascular spasm or ischemia [9, 10].

Acute complications of TC include arrhythmias, pulmonary edema, cardiogenic shock, transient LV outflow tract obstruction, mitral valve dysfunction, acute thrombus formation, stroke and Death [11]. There are no established treatment algorithms for TC at present, but as most patients present with an ACS or heart failure (HF), they are treated according to ACS/HF guidelines. Tako-tsubo cardiomyopathy is generally a benign condition; in-hospital mortality is 0-8% [11-16].
Recurrent TC disease is rare and only few cases have been previously reported [14, 15]. Diabetes has been reported to be protective against TC and a few reported TC in diabetic patient indicating low prevalence (10-20%) [17, 18, 19], in contrast to the high prevalence of diabetes in ACS (52%) in our previous study [20].

We present in this report a rare case of recurrent apical ballooning syndrome in a woman with several hospitalizations for chest pain, dyspnea, and electrocardiographic (ECG) changes triggered by diabetic ketoacidosis (DKA).

2. The Case

A 53 year old female with poorly controlled type 2 diabetes due to medication non compliance who had 4 hospital admissions over the last 3 years for chest pain, dyspnea, acute ST-T elevation, cardiac biomarkers elevation, left ventricular apical severe hypokinesis and ballooning diagnosed by echocardiography. She always received acute coronary syndrome (ACS) management at presentation and had urgent coronary angiogram during the initial three presentations and all revealed normal coronary arteries. The common associated factor in all admissions was the presence of DKA at all presentations. After DKA treatment, she was kept on anti failure medications in the form of angiotensin converting enzyme inhibitor (ACEI), beta blocker (β-blocker), diuretic and aspirin. She always recovered fully in few weeks time with normalization of LV function and wall motion in follow up echocardiography and usually she stopped all her cardiac medications. Currently, she is stable with much better compliance with treatment, glycemic control, HbA1c and last echocardiography 6 months after the last TC event showed completely normal LV systolic function.

3. Discussion

Tako-tsubo syndrome or cardiomyopathy is a recently recognized entity. Many theories have been presented for the possible pathophysiology of TC. Studies have proposed the mechanism as an association with excessive sympathetic stimulation, microvascular dysfunction, spasm and metabolic abnormalities [1-5, 16, 21].

Emotional and physical stresses often precipitate the clinical presentation. This suggests a relationship between cortical brain activity (a central catecholamine surge) and myocardial stunning [1,2,22,23]. Studies have found that patients with TC have statistically significant higher levels of serum catecholamines (norepinephrine, epinephrine, and dopamine) than patients with myocardial infarctions [23-26]. Increase beta-2-adrenoceptor activity in the setting of a high catecholaminergic state has been proposed as possible reproducible model for this entity, inducing cardiac dysfunction and myocyte injury though calcium leakage due to hyperphosphorylation of the ryanodine receptor 2 [27]. The apical portions of the left ventricle have the highest concentration of sympathetic innervations found in the heart and increased beta-2 concentration gradient from apex to base could play an important role in the apical myocardial dysfunction and ballooning commonly found in TC cases [19-23]. Combining the results from multiple studies plasma norepinephrine levels were elevated in 74% of cases [12].

The pathogenesis of TC may be multifactorial, similar to catecholamine induced cardiomyopathy [25], pheochromocytoma [26] and subarachnoid hemorrhage [27].

Catecholamine excess has reversible toxic effects on myocardium that have been documented in cases of pheochromocytoma [26-30]. Histological examination of biopsy samples from the affected left ventricle of patients with TC has shown intracellular accumulation of glycogen, many vacuoles, disorganized cytoskeleton and contractile structure, contraction band necrosis and increased extracellular matrix proteins, which is associated with clinical states of catecholamine excess [31,32,33]. These alterations resolved nearly completely after functional recovery.

Takotsubo cardiomyopathy is associated with minor release of cardiac enzymes so suggests some microscopic damage to the myocytes. The absence of causative coronary artery disease on angiography and the wall motion abnormalities point to an insult that is microscopic in nature.

Recurrent TC disease is rare and only few cases have been previously reported [14, 15].

Data on diabetes as a trigger for TC is scarce and previous reports suggest even a protective role of diabetes against TC [17, 18, 19, and 34] as compared to the higher prevalence of diabetes in ACS as shown in our previous study [20].
No previous documentation regarding recurrent TC triggered by DKA as in our case. We strongly believe that the above mentioned catecholamine and neuro-hormonal axis is probably the underlying mechanism that is stressed and over stimulated during DKA as in our patient, overwhelming and counteracting the baseline autonomic neuropathy known in diabetic patient.

There is no controlled data to define the optimal medical regimen to treat TC during DKA, but it has been postulated that it is reasonable to treat the underlying cause and with the standard medications for LV systolic dysfunction. These include ACE I, β-blocker (or combined α- and β-blocker), and diuretics, which may be necessary for volume overload states [2]. Aspirin and statin are also reasonable treatment [6, 35, 36].

It was reported that thrombosis occurs in takotsubo cardiomyopathy cases, which might reflect vasoconstriction, platelet activation, or prothrombotic effects of extremely high epinephrine levels that of course will be more exaggerated in diabetic patients [37-41]. In one study, 5% of patients with TC developed LV thrombus, and all patients with LV thrombus, were started on anticoagulation and one patient developed stroke [41]. It is reasonable to continue anti-coagulation until the thrombus resolve and left ventricular function improves [42].

4. CONCLUSION

To the best of our knowledge, we report a unique first case of multiple recurrences of TC triggered by diabetic ketoacidosis. Our patient was diagnosed 4 times with TC based on the widely accepted Mayo guidelines for TC. Prevention with good glycemic control, medications compliance, and avoidance of other triggers have been the key to prevent further cardiac events.

Chronic management of TC is primarily empirical, but there is emerging data supporting the role for alpha and beta blockade. In diabetic patients who are stable, it appears advantageous to prevent excessive sympathetic activation by combining alpha and beta blockade during episodes of ketoacidosis.

We hope our case contribute to the understanding of this interesting rare condition and will further help in the management of patients with similar conditions.

Lastly, a more complete understanding of the pathophysiology of this syndrome in diabetics awaits further research.

REFERENCES


