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Abstract: This paper presents a new version of the dynamic shortest path problem. Given ),( AVG be 

directed a graph, where V is a set of vertices, A is a set of arcs, each arc Ajie ),(  has a transit time

ij . The study concerns the problem of finding shortest paths from one vertex to all other vertices in 

networks for which costs can vary with time.Each vertex Vi has a time-window ],[ ii ba within which the 

vertex may be visited and waiting with a corresponding time-varying cost is allowed at the vertices. The 

transit times ij can also take negative values. A general labeling method, as well as several 

implementations, are presented for finding theshortest path and detecting negative cycles under the 

assumption that arc traversal costs are piecewise linear and vertex waiting costs are piecewise constant. 

Keywords: Shortest path problem, time-varying networks, time-windows, labeling algorithms, minimum 

cost length.

 

1. INTRODUCTION 

One of the most studied problems in graph algorithms is the shortest path problem. The shortest 

path problem is one among the most studied network optimization problems. This problem has 

applications in a large number of fields and arises as a stand-alone model in routing problem 

whenever we want to send some material between two specified points in a network as quickly or 

as cheaply as possible. Solution approaches for classical shortest path problem use some labeling 

procedure and are divided into two classes: label-setting and label-correcting. Label-setting 

algorithm can be applied only on acyclic networks and networks with nonnegative costs, whereas 

label-correcting algorithms are more general and applicable for all classes of problems. A 

complete discussion and comparison between these algorithms can be found in[1]. 

Let ),( AVG  be a directed graph, where V  is a set of vertices, VVA  a set of arcs. Each 

arc Ajie ),(  has an associated transit time ij , which specifies the amount of time needed to 

travel through arc ),( ji . The dynamic shortest path problem is a generalization of the shortest 

path problem whose aim is to find a path of minimum cost length through a network for which: 

 each vertex Vi  has a time windows ],[ ii ba  where, iii bta , Tti , is a 

services vertex time see,[2,3, 4, 5, 6] and [7], 

 each arc Ajie ),(  has a transit time ij  which specifies the amount of time to 

traverse through each arc, 

 waiting is permitted at the vertices of the network for later departure,  

 Network characteristics such as arc transit and costs length can change over time and are 

known for all values of time.  
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The problem was first introduced in [8], who present a solution algorithm based on the Bellman’s 

principle of optimality. In the model studied by [8], time is described into steps of unit length, 

leading to a discrete time model. This model suffers from a serious drawback: the times at which 

“decisions” have been made fixed in advance before the problem is solved. For many 

applications, this is a necessary feature of the problem. This is where the continuous time model 

comes into play, which allows decisions to be made at any arbitrary point in time. The general 

properties and algorithms have been discussed in both discrete time and continuous time settings 

in [9, 10, 11, 12, 13,14,15, 16, 17], and [18,19] among others.  

In all of the work done so far on the subject in a continuous time model, it is assumed that the 

transit times are strictly positive. This assumption is not so restrictive in direct applications of the 

dynamic shortest path problem where arc transit times are positive. However, as for the classical 

shortest path problem, the dynamic shortest path problem arises as a sub-problem in developing 

algorithms, such as negative cycle canceling algorithm, for dynamic minimum cost flows in a 

continuous time framework see,[20]. As mentioned alreadyby[20], the most imported task in 

implementing a negative cycle canceling algorithm for dynamic minimum cost flows is how to 

check whether or not there exists a negative dynamic cycle in a residual network. Moreover, if 

such a dynamic cycle exists, then how to detect it. The residual network may contain arcs with 

associated negative transit times. Hence we cannot use the results in the literature for the dynamic 

shortest path problem since the assumption that all transit times are non-negative or strictly 

positive is central to all of them. 

This paper studies a new version of the dynamic shortest path problem with time-windows 

andtime-varying costs in a continuous time setting, but in contrast to earlier work, now with 

possibly negative transit times. It this study shows that the problem is reduced to a classical 

shortest path problem on a so-called time-expanded network. This allows us to apply algorithm 

that are available in the classical case to the dynamic case. 

The remainder of this paper is organized as follows: In section 2, we first give the problem 

formulation and basic concepts of the dynamic shortest path problem with time-windows and 

time-varying costs. In section 3, we then outline a generic labeling algorithm for solving this 

problem and present several special implementation of the generic algorithm under some 

assumption on the nature of the problem date. This work is terminated by a recommendation that 

the negative dynamic cycle detection problem needs further research. Finally, some concluding 

and discuss the related problems for future research in section 4. 

2. PROBLEM FORMULATION AND BASIC CONCEPT 

Given a directed network ),( AVG , where },...,2,1{ nV is a set of vertices and VVA  is 

a set of arcs. Let m  denote the number of arcs in network G , i.e., Am . To simplify notation, 

we assume without loss of generality that every pair of vertices is connected by the most one arc. 

Each arc Ajie ),( has an associated transit time ij , which specifies the amount of time 

needed to travel through arc ),( ji . More precisely, if a traffic leaves vertex i  at time it , along the 

arc ),( ji , then it arrives at vertex j  at time ijit , where the time-windows of two vertices i

and j are ],[],,[ jjii baba respectively, and ,, jjjiii btabta Ttt ji , , see Figure 1. 

 
       Figure 1. Vertex service withtime-windows 

Definition 2.1.Given a fixed time horizonT . A vertex-time pair to be a member of 

],0[ TV . A continuous-time dynamic path from a vertex-time pair ),(i to a vertex-time pair

),( j is a sequence of distinct vertex-time pair as: 

),(),(),...,,(),,(),(: 2211 jtititiip qq                                                                                  
(1) 
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in which either Aii kk ),(
1

where 
kkk iii bta  and ,

1, kkk iiit  in which case traffic leaves 

vertex ki for vertex 1ki at time 
ki

t  and arrives at 
1ki

t , or 1kk ii , in which case a waiting occurs at 

vertex ki during the time interval ],[
1kk ii tt . Such a sequence is called a continuous-time dynamic 

cycle if ),(),( ji and the other a vertex-time pair are distinct.  

The cost of a dynamic path P is defined by: 
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(2) 

where the traversal cost is )(tcij  along arcthe ),( ji  at time t , and )(twi is the waiting cost of the 

vertex i  at time t . Without ambiguity, throughout the rest of this paper, we assume that the length 

of the path is equal to its cost and use interchangeably the terminologies cost and length. A path  

issaidtobeadynamicshortestpathfrom ),(i to ),( j if )()( 'PCostPCost for all dynamic path 

'P from ),(i  to ),( j . A dynamic cycle is said to be negative if its cost is negative. 

3. LABELING ALGORITHMS 

We are now in a position to state the Continuous-Time Dynamic Shortest Path (CTDSP) problem: 

we wish to determine a shortest dynamic path time-windowsand time-varying costs from a vertex-

time pair )1,0(  to every other a vertex-time pair ).,( ti We suppose the following condition holds: 

 Condition:The network ),( AVG contains a dynamic path time-windows and time-

varying costs from a vertex-time pair )1,0( to every other a vertex-time pair ).,( ti  

This condition imposes no loss of generality. In particular, it can be satisfied by introducing 

artificial arcs ),1( i  joining vertex 1 to vertex i  for each vertex }.1{\Vi Each artificial arc ),1( i  

has a zero transit time and a large traversal cost. It is clear that no such arc would appear in a 

shortest dynamic path time-windows and time-varying costs from )0,1(  to any  a vertex-time pair

),( ti  unless network G contains no dynamic path time-windows and time-varying costsfrom

)0,1( to ),( ti  without artificial arcs. 

We now present a generic algorithm based on a labeling method for solving the CTDSP problem. 

The basic idea is to find out from a vertex-time pair )0,1( and label othera vertex-time pair 

according to their distances from ).0,1(  The algorithm maintains a distance label )(tdi with each

),,( ti which is an upper bound on the length of the shortest dynamic path time-windows and time-

varying costs to ).,( ti  At any point of the algorithm, the label )(tdi is either , indicating that 

we did not yet discover any dynamic path time-windows and time-varying costs from )0,1(  to a 

vertex-time pair ),,( ti  or it is the length of some dynamic path. Before proceeding our discussion, 

let us give the necessary and sufficient conditions for a set of labels to represent the length of 

shortest dynamic paths time-windows and time-varying costs.  

Theorem 3.1.For any a vertex-time pair ),( ti and all vertices satisfy the time-windows and time 

varying-costs, let )(tdi denote the length of some dynamic path time-windows and time-varying 

costs from a vertex-time pair )0,1(  to a vertex-time pair ).,( ti Then the labels )(tdi represent the 

length of shortest dynamic paths time-windows and time varying-costs if and only if they satisfy 

the following Shortest Path Optimality Conditions (SPOC): 

T

t
iii dttwtd )()( is monotonic decreasing on ],0[ T , ,ii bta for every Vi                       (3)

0)()()( ijjiij tdtdtc for every Aji ),( and ,ii bta ],0[ Tt
                                

(4) 
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Proof:It is clear that if the labels )(tdi are the length of shortest augmenting paths, they satisfy 

the optimality conditions (3) and (4). So we assume that for anya vertex-time pair ),,( ti labels 

)(tdi is the length of some dynamic path time-windows and time-varying costs from )0,1(  to ),( ti  

satisfying conditions (3) and (4). Thus )(tdi is an upper bound on the length of the shortest 

dynamic path time-windows and time-varying costs from )0,1(  to  ).,( ti We show that )(tdi is 

also a lower bound on the length of the shortest dynamic pathtime-windows and time-

varyingcosts from )0,1(  to ),,( ti  which implies the conclusion of the theorem. Consider an 

arbitrary the dynamic shortest path time-windows and time-varying costs

),(),(),...,,(),,()0,1(: 2211 titititip qq from )0,1(  to ).,( ti  To simplify notation, we assume 

without loss of generality that 1kk ii , 
kkk iii bta for only one k, say l, )11( ql and 

Aii kk ),( 1 for all other .,...,2,1 qk  This means that the waiting only occurs at node li from 

time lt to 1lt . Hence we have 
11 , kkkk iiii tt for .,...,1,1,...,1 qllk Conditions (3) and (4) 

imply that, for ],0[, Ttbta kiii kkk
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Therefore, )(tdi is a lower bound on the cost of any dynamic path time windows from )0,1(  to 

).,( ti  

Having proved Theorem 1, the algorithm starts by setting 0)0(1d and )(tdi for each other 

a vertex-time pair. It then proceeds by checking the shortest path optimality conditions (3) and (4) 

and updating the labels through a dynamic programming approach. In particular, at every 

iteration, the algorithm selects either: 

 A vertex Vi and some time interval ],0[),[ Tvu such that 
T

t
ii dwtd 0)0()( is strictly 

increasing on [u,v], and sets dttwudtd i

t

u
iii )()()( for all ),,[ vut or  

 An arc Aji ),( and some time ],0[ Tt such that )()()( tdtctd iijijj ,and sets 

)()()( tdtctd iijijj , for ji,  satisfies the time windows condition.   

If no such vertices or arcs exist, then the algorithm terminates. Algorithm 1 specifies the generic 

version of this procedure. 

Algorithm 1:  

Initial distance labels d as  

:)(tdi ],0[, TtVi  

0:)0(1d  

while labels d violate the shortest path optimality conditions do 

if 
T

t
ii dttwtd )()(  is strictly increasing on some interval ],0[),[ Tvu for some 

Vi  
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 then  

 dttwudtd
t

u
iii )()()( for all ),[ vut , ii bta , 

 end if 

 if ),()()( tdtctd iijijj  for some Aji ),(  and ],0[ Tt then 

],0[,),()()( Ttbtatdtctd iiiiijijj  

 end if 

end while 

Theorem 3.1 implies that when the algorithm terminates, it has found optimal labels. More 

precisely, at termination, if the label )(tdi is finite, it represents the cost of the shortest dynamic 

path time-windows and time-varying costs from a vertex-time pair )0,1(  toa vertex-time pair

);,( ti otherwise it indicates that the network G contains no dynamic path time-windows and time-

varying costs from )0,1(  to ).,( ti  Hence termination of algorithm 1 after a finite number of 

iteration deserves attention from both theoretical and computational points of view. If network G
has a dynamic cycle with negative cost, then Algorithm 1 may never terminate as a consequence 

of the following lemma.  

Lemma 3.2.Suppose that network ),( AVG  contains a dynamic cycle with negative cost. Then 

no set of labels id  satisfies the shortest path time-windows and time-varying costs optimality 

conditions (3) and (4). 

Proof: We suppose the opposite and derive a contradiction. Assume that there are some labels id

satisfying the conditions (3) and (4). Then, we can show, by a similar argument as the proof of 

Theorem 3.1, that the conditions (3) and (4) imply that 0)(wCost  for each dynamic cycle .w  

This is a contradiction to the fact that network G  has a dynamic cycle with negative cost due to 

the hypothesis of the lemma 3.2.  

In what follows, we show that the opposite direction of Lemma 3.2 is also true for the special case 

that the traversal costs ijc  are piecewise linear and the waiting costs is are piecewise constant.  

Definition 3.3.Let f be a real-valued function defined on the time interval ],0[ T  and 

},...,{ 0 ptt  be a partition of ],0[ T  i.e., ....0 10 Tttt p  We say that f is piecewise 

constant with respect to the partition , if it is constant on ),[ 1 qq tt for .,...,2,1 pq  We say that 

f  is piecewise constant on ],0[ T  if it is piecewise constant with respect to some partition of 

],0[ T . The breakpoints of a piecewise constant or piecewise linear function are the discontinuity 

points in the function or its derivatives. Thus a piecewise constant function clearly is 

discontinuous at the breakpoints, but a piecewise linear function itself may not be discontinuous 

at the breakpoints. 

Definition 3.4.Let  denote the set of breakpoints of Ajicij ),(, . A partition },..,{ 0 ptt of 

],0[ T is said to be valid for the CTDSP problem if it contains the set , and for each arc (i,j) and 

any breakpoints qt with ],0[ Tt ijq , we have ijqt . A valid partition of 

minimum cardinality is denoted by .*
 

Definition 3.5.Given a valid partition },...,,{ 10 pttt , a time-expanded networkof ,G denoted 

by ),(G  is defined as follows: )(G contains 1p copies of N  denoted by pNNN ,...,, 10 , in 

which 1qN corresponds to the time interval ),[ 1 qq tt for 1,...,1 pq , and pN to the time 

horizon T . Subsequently, index q varies from 1 to .P  The copy of vertex Ni in 1qN is 
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denoted by .1qi  For each arc Aji ),(  and each time 1qt  with Tt ijq 10 , the 

network G( ) contains an arc ),( 1 qq ji , where ijqq tt 1 ,
111 qqq iii bta .Traversing 

through this arc corresponds to leaving vertex i  at time 1qt  and arriving at vertex j  at time .qt  

Hence, arc ),( 1 qq ji has an associated cost )( 1qij tc . For each vertexi, there is a holdover arc from 

1qi to qi . Travelling through arc ),( 1 qq ii corresponds to the waiting at vertexi from time 
1qi

t to
qi

t

. So holdover arc ),( 1 qq ii has an associated cost )(
1qii ts where, .

111 qqq iii bta  

Remark 3.6.The traversal costs ijc  are piecewise linear for all Aji ),( and the traversal costs is  

for all Ni are piecewise continuous from right.  

Lemma 3.7.If network ),( AVG  contains no negative dynamic cycle, then there exist a set of 

labels id which satisfy the shortest path time windows optimality conditions (3) and (4). 

Proof:We suppose that },...,,{ 10 pttt  is a valid partition for the CTDSP problem. Consider 

the time-expended network ).(G It is clear that )(G has no negative cycle since network G  

contains no dynamic cycles with negative cost due to the hypothesis of the lemma. Let )( qi td

denote the cost of the shortest path time windows from vertex )0,1( to vertex ),( qti in ),(G  for 

each Vi and each qt . By [1],it is noted that the labels )( qi td are well defined and satisfy 

the following conditions: 

q

t

t

iqiqi tVidttwtdtd
q

q

,,)()()(

1

1 (6) 

qqijqiijqj tAjitctdtd ,),(),()()(                                                                             (7) 

 

We now define the labels )(tdi for all ],0[ Tt by 

)()1()()( 1qiqii tdtdtd for qq ttt 1 where )/()( 11 qqq tttt                           (8)
 

Now by the fact that distance labels id are piecewise linear function with respect to partition 

and conditions (6) and (7) hold for each time step qt , qqq bta , we can easily check that 

the labels id , given by (8), satisfy the shortest path time windows optimality conditions (3) and 

(4). 

Theorem 3.8.Let the network ),( AVG  contains no negative dynamic cycle. Then shortest 

dynamic paths time-windows and time-varying costs from )0,1(  to all a vertex time pair ),,( ti

],0[, Ttbta ii  can be found in )(
2

* nmO time. 

Proof: Consider the time-expanded network )( *G with respect to the valid partition .*
By the 

hypothesis of the theorem, we conclude that the network )( *G contains no negative cycles. 

Hence, by applying the First-In-First-Out(FIFO) label-correcting algorithm [1] in the time-

expanded network ),( *G  we can find shortest paths time-windows and time-varying costs from 

vertex )0,1( to all other vertices ),( qti with 
qqq bta  in )(

2
* nmO time. We now define the 

labels )(tdi for all ],0[ Tt  by 

)()1()()( 1qiqii tdtdtd for qq ttt 1 for, )/()( 11 qqq tttt                              (9) 
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As we have seen before in the proof of lemma 3.7, the labels  satisfy the optimality conditions 

(3) and (4). Moreover, for each ],,0[ Tt  it can easily be shown that )(tdi  represents the cost of 

some dynamic path time-windows in network .G  Hence by Theorem 1, )(tdi is the length of the 

shortest dynamic pathtime-windows and time-varying costs from a vertex-time pair )0,1(  to a 

vertex-time pair ).,( ti  

The following two corollaries show that the running time )(
2

* nmO  can be improved to

)( * mO  and ))log(( *** nnmO  on networks with strictly positive transit times, for 

each vertex has the time-windows, and the network with the non-negative costs. 

Corollary 3.9.Suppose that the transit times ij are strictly positive. Thenthedynamic shortest 

paths time-windows and time-varying costs from )0,1(  to all a vertex time pair ),( ti , 

],0[, Ttbta ii  can be found in )( * mO  time. 

Proof:It is clear that network G  contains no dynamic cycle since all transit time are strictly 

positive. Hence, we can apply the reaching algorithm [1]in the time-expanded network ).( *G  

This leads to an algorithm of time )( * mO  for the CTDSP problem. 

Corollary 3.10.Suppose that the traversal costs ijc  and the waiting costs is  are non-negative. 

Then shortest dynamic paths time-windows and time-varying costs from )0,1(  to all a vertex time 

pair ),( ti , ],0[, Ttbta ii  can be found in ))log(( *** nnmO  time. 

Proof:We can apply the Fibonacci heap implementation of Dijkstra’s Algorithm [1] in the time-

expanded network )( *G , leading to an algorithm with running time  

))log(( *** nnmO for the CTDSP problem. 

So far we have considered that case where network G  has no negative dynamic cycle. We now 

consider the more general case where network G  may contain a negative dynamic cycle. The 

problem is to find a negative dynamic cycle in network G or to prove that there are none. This 

problem comes up as a sub-problem in algorithms for dynamic minimum cost flow problems with 

time windows andtime-varying parameters see, [5]. In the context of the classical shortest path 

problem, there are several algorithms for detecting the presence of a negative cycle if one exists. 

Most of them combine a shortest path algorithm and a negative cycle detection strategy. In [21] 

survey cycle detection strategies, study various combinations of shortest path algorithms and 

cycle detection strategies and find the best combinations. All of the results presented in [21] can 

be carried out on the time-expanded network )( *G  to derive analogous results to the CTDSP 

problem. As a general result, we can state the following theorem. 

Theorem 3.11.If network G  contains a negative dynamic cycle reachable from a vertex time pair 

),0,1(  then the above algorithm finds such a dynamic cycle in )(
2
nmO time. 

Proof: Consider the time-expanded network ).( *G We can show that )( *G contains a negative 

cycle by the fact that network G  has a negative dynamic cycle. Then by the FIFO lable-

correcting algorithm [1], we can find a negative cycle in )( *G  in )(
2
nmO  time. This 

negative cycle corresponds a dynamic cycle in the original network of equal cost. 

4. CONCLUSION 

This paper presented a new version of the dynamic shortest path time-windows and time-varying 

costs with possible negative transit time on arcs, each vertex has a time-windows interval within 
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which the vertex may be visited, each vertex has visited exactly once, motivated by its 

applications in dynamic minimum cost flows. We showed that this problem is equivalent to a 

classical shortest path problem in a so-called time-expanded network. Although our approach 

allows us to apply any standard technique on the time-expanded network, the size of this network 

is typically very large for realistic problems and it may be beneficial to avoid such explicit 

expansion. We restricted our attention to the cases that are traversal costs are piecewise linear and 

vertex waiting costs are piecewise constant. According to the more general setting of the cost 

functions should be piecewise analytic, this is important to the topic. This case requires a 

complicated argument and further work. 
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